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In this paper we improve known bounds on the Rao function for non-extremal 
curves, as well extending these results to nonzero characteristic. These improved 
bounds are shown to be sharp, and the curves which yield sharpness are classi- 
fied. Schlesinger's notion of the spectrum of a curve is introduced and used to 
streamline proofs. 

0. I n t r o d u c t i o n  

In [8], Martin-Deschamps and Perrin obtain sharp bounds for the Rao function 
hl(Zc(n)) of a curve C C ~3 (see [8], theorem 2.5 and corollary 2.6). The non- 
arithmetically Cohen-Macaulay curves which achieve equality for their bound are 
called extremal curves. In a later paper, they characterize the extremal curves as 
the minimal curves associated to certain Koszul modules ([9], theorem 2.4). Fur- 
ther, they show that these curves form an irreducible component of the Hilbert 

1 scheme H(d, g), which is nonreduced when d > 2 and g < ~(d - 2)(d - 3) ([9], 
theorems 4.2 and 4.3). 

Using a different method, Ellia recovers the bounds of Martin-Deschamps 
and Perrin ([2], §2, corollary 6) and geometrically characterizes the extremal 
curves (assuming that  char k = 0; see [2], §2, theorem 8). Ellia further proves 
that if a curve is neither arithmetically Cohen-Macaulay nor extremal, then its 
Rao function satisfies even stronger bounds ([2], §2, proposition 9). 

The goal of this note is twofold. Firstly, we improve the stronger bounds of 
Ellia, and show that  the improved bounds are sharp. Secondly, we classify the 
curves (called subextremal curves) which achieve these bounds. While previous 
work in this direction has assumed that the ground field has characteristic zero, 
extra care is taken here to make the results valid in all characteristics. We 
also give examples which suggest that  there are not natural stronger bounds on 
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the Rao function for curves which are neither arithmetically Cohen-Macaulay, 
extremal, nor subextremal. 

The paper is organized as follows. The first section gives the definition and 
basic properties of the spectrum of a curve in IPa; these results can be found in 
Enrico Schlesinger's Ph.D. thesis [13]. In the second section, the sharp bounds 
for the Rao function of non-extremal curves are given, and the curves achieving 
these bounds are classified. At the end of the second section, we give examples to 
show that things get complicated if one tries to find stronger bounds for curves 
which are not subextremal. 

We work over an algebraically closed field k of arbitrary characteristic. S = 
k[x, y, z, w] denotes the homogeneous coordinate ring of IP~.. All curves considered 
here are locally Cohen-Macaulay and have no zero-dimensional components. We 
use the abbreviation ACM to denote arithmetically Cohen-Macaulay curves. I 
would like to thank Enrico Schlesinger for the use of some of his thesis results, 
as these made proofs much easier. Finally, I am grateful for the careful reading 
of the referee, who found some problems with the first draft. 

1. T h e  S p e c t r u m  o f  a C u r v e  

In this section we review some results from Schlesinger's thesis [13]. In particular, 
we recall the notion of the spectrum of a curve (this is analogous to the spectrum 
of torsion free sheaves studied in [12]) and give a few of its properties. In order 
to define the spectrum, we note the following proposition. 

P r o p o s i t i o n  1.1. Let C C IP 3 be a curve. If  L is a line which does not meet C, 
then the Cohen-Macaulay ring Ac  = H°(Oc)  is a free graded SL-module, where 
SL is the polynomial subring of S generated by the linear forms vanishing on L. 

Proof. See [13], proposition 1.2.4. 

Def in i t i on  1.2. Let C C IP 3 be a curve. Let L C ]p3 be a line which does not 
meet C. By proposition 1.1 above, we have an isomorphism of graded SL-modules 

H°(Oc) "" @ ezSL( n) hc(") 

The spectrum of C is the nonnegative function hc : Z -+ Z. This definition does 
not depend on the line L chosen, for the formula above shows that  hc(n) = 
A2h°(Oc(n)). 

P r o p o s i t i o n  1.3. Let C C IP 3 be a curve with spectrum hc. Then 
(a) Pc(n) = E k ( n  - k + l )hc(k) .  
(b) degC = E n  hc(n).  
(c) genusC = 1 + E . ( n  - 1)hc(n) .  
(d) h°(wc(n)) = ~-~k<n(n - k + 1)he(2 - k). 
(e} e(C) + 2 = m a x { n :  hc(n) 5£ 0}. 

Proof. See [13], propositions 1.4.8 and 1.4.9. 

N o t a t i o n  1.4. By part  (b) above, the spectrum h : Z --+ N of a curve is a 
finitely supported function. It is convenient to describe such functions with the 
exponent notation. Specifically, the spectrum h can be represented by the tuple 
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of integers with exponents {nhC(n)}. The exponent is suppressed when it is equal 
to 1. 

If k : Z --~ N is another finitely supported function described in exponent 
notation as {nk(n)}, then we use the notation 

{n h(n)} u {n k(n)} 

to denote the finitely supported function h + k. We use similar notation for any 
number of such functions. 

E x a m p l e  1.5. An elementary calculation shows that a plane curve C of degree 
d has spectrum he (n )  = (~) - (nod). In the exponent notation, this is denoted 

{ 0 , 1 , 2 , . . . , d -  1}. 

Conversely, if C has the spectrum above, the definition of spectrum shows that 
h°(Oc(1)) = 3. It follows that the map H°(Or3(1)) ~ g ° ( O c ( 1 ) )  is not surjec- 
tire and hence C is planar. 

Remark 1. If C C lP a is an Arithmetically Cohen-Macaulay curve, then the 
spectrum of C can be interpreted easily in terms of the numerical character 
used by Gruson and Peskine [3] or the gamma character employed by Martin- 
Deschamps and Perrin [7]. Specifically, i fs  = s(C) and C has numerical character 
(no, n l , . . . ,  n , - l ) ,  then the gamma character of C is given by the formula 

- 1  i f 0 < n < s  
7c(n) = # { k :  n-= nk} otherwise. 

Given the gamma character 7c of an ACM curve C, the spectrum is given by 

k>n 

For example, let C be a twisted cubic curve. Then C has numerical character 
(2, 2) and 7-character 7c(n)  = - ( ~ )  + 3(no 2) - 2(n;3). The spectrum of C is 
the function he (n )  = (o) + (no1) - -2(" ;2)"  In exponent notation, this is written 
simply {0, 12}. 

Following along the lines of Okonek and Spindler's work [12], Schlesinger proves 
the following necessary conditions on the spectrum. For convenience we give only 
the statement for space curves. 

T h e o r e m  1.6. Let C C lP 3 be a curve with Rao module Mc .  Let pc (n )  = 
dim(Mc ®s k) .  and e = e(C).  Then e + 2 >_ 0 and 
(a) he (n )  > l + p c ( n )  for O < n < e + 2. 
(b) h e ( n )  = pc(n)  = 0 for  n > e + 2. 
(c) l f h c ( l )  = p c ( l ) + l  f o r s o m e  1 < l < e+2, then hc(n)  = 1 for l  < n < e+2.  
Further, i l l  < e + 1, then C contains a plane curve of degree e + 3. 

Proof. See [13], theorem 1.7.1. 
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D e f i n i t i o n  1.7. We say tha t  a function h : 2~ -~ l~I is 1-admissible if 
(a) h is has finite support  
(b) h(0) > 0 
(c) if h(k) = 0 for some k > 0, then h(l) = 0 for all l _> k 
(d) if h(k) = 1 for some k > 0, then h(l) _< 1 for all l > k. 

From proposition 1.3 and theorem 1.6 it is immediate  that  the spectrum of a 
curve in IP 3 is 1-admissible. Now we prove a combinatorial proposition which will 
be used in the next section. 

P r o p o s i t i o n  1.8. Let h : Z --~ Bq be a 1-admissible function with ~-,nez h(n) = 
d. Let g(h) = 1 + ~ , e z ( n  - 1)h(n) denote the genus of h. 
(a) We have 9(h) <_ ½(d- 1)(d--  2) with equality if and only if h is given by 

{0, 1 , . . . , d -  1}. 

(b) Let a < 1 and suppose that the function h' given by h'(n) = h(n) - (no") + 
n - a - 1  ( o ) is 1-admissible. Theng(h) < a - l + ½ ( d - 2 ) ( d - 3 )  with equality if and 

only if h is given by 
{a} u {0, l , . . . ,  d -  2}. 

(c) Suppose that h ( d -  1) = 0 and d >_ 3. Then g(h) <_ 1 ( d -  2 ) ( d -  3) with 
equality if and only if h is given by 

{1} LI {0, 1 , . . . , d -  2}. 

(d) Let a <_ 1 and suppose that the function h' given by h'(n) : h(n) - (noa) + 
r l ~ a - -  I ( o ) is 1-admissible. Further assume that h ' ( d -  2) = O. Then 9(h) < a -  

1 1 + ~ ( d -  3 ) ( d -  4) with equality if  and only i fh is given by 

{a} U {1} U {0, 1 , . . . , d -  3}. 

(e) Suppose that d > 5 and h(d - 2) = O. Then En>x(n - 1)h(n) < 1 + ½(d - 

3 ) ( d - 4 )  with equality if and only if h is given by 

{ 1 , 2 } o { 0 , 1  . . . .  , d - a } .  

Proof. Noting the easy implications (a) ~ (b) and (c) ~ (d), it suffices to prove 
(a), (c), and (e). The proofs of these are quite similar, so we only prove (e). 

We induct on d. For the induction base d = 5, we have h(3) = 0 and hence 
h(l) = 0 for all I _> 3 by condition {c) of 1-admissibility. It follows tha t  ~ , > l ( n -  
1)h(n) = h(2). If  h(2) > 2, then since y: .h(n)  = 5 and h(0) > 0, w e m u s t  
have h(1) _< 1, which contradicts either condition (c) or (d) of 1-admissibility, 
depending on whether h(1) = 0 or 1. Thus h(2) _< 2 and we deduce the bound. 
Moreover, if h(2) = 2, then h(1) > 1 f rom condition {d). Since h(0) > 0 by 
condition (a) and h sums to 5, we must have h is given by {0, 1 =, 2=}. 

For the induction step, suppose that  d > 5. Let p = max{l : h(l) > 0}. If 
p = 0, then y'~.,>l(n - 1)h(n) = 0 < 1 + ½(d - 3 ) ( d -  4). If p > 0, then we note 

that  the function h'  defined by h'(l) = h(l) - (top) + ( t -~ - l )  is 1-admissible and 
sums to d - 1. It follows from induction hypothesis that  

~-']~(n- l)h(n) = E ( n -  l)h'(n) + (p- I) ___ 1 + l ( d -  4)(d- 5) + (p- I) 
n>.l n> l  
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and since p < d - 3 we deduce the bound of part  (e). Moreover, if this is an 
equality then p = d - 3 and h' is given by 

{1,2}U { 0 , 1 , . . . , d -  4}, 

finishing the proof of part (e). 

We close this section by giving Schlesinger's criterion for when a curve has a 
biliaison of negative height on a quadric surface. 

P r o p o s i t i o n  1.9. ( S c h l e s i n g e r )  Let C C ~3 be a non-complete intersection 
curve lyin 9 on a quadric surface Q. Then there exists a curve Co C Q obtained 
from C by an elementary biliason of height h < 0 if and only if hc(1)  >_ 2. 

Proof. See [13], proposition 2.2.6. 

2. B o u n d s  on  t h e  R a o  F u n c t i o n  

First we state the absolute bounds on the Rao module of a curve. 

P r o p o s i t i o n  2.1. ( M a r t i n - D e s c h a m p s  a n d  P e r r i n )  Let C C ]p3 be a non- 
degenerate curve. Then 

On + ½ ( d -  2 ) (6  - 3) - g 
hl (Zv(n) )  < ½ ( d -  2 ) ( d -  3) - g  

~ ( d -  1 ) ( d -  2 ) - g -  n 
0 

i f  n < g -  ½ ( d -  2 ) ( d -  3) 
ira - ~ ( d -  2)(d - 3) < n < 0 
i f O < n < d - 2  
if  d -  2 < n < ½ d ( d -  3) - g 
i f  n >  ½ d ( d -  3) - g 

Proof. If char k = 0, this result can be read from [8], theorem 2.5 and corollary 
2.6. If char k = p > 0, their proof still holds for curves whose general plane 
section is not contained in a line. For curves whose general plane section is 
contained in a line, see proposition 2.6 below for even stronger bounds. 

A curve C is called extremal if it achieves the bounds of proposition 2.1 and is 
not ACM. The following result (which is inspired by [2], §2, theorem 8) gives 
several characterizations of the extremal curves. 

P r o p o s i t i o n  2.2. Let C C IP 3 be a curve of  degree d > 2 and genus g. Then 
the following conditions are equivalent: 
(i) C is an extremal curve. 
(ii) There exists a < 0 such that C has spectrum 

( a }  u {0 ,1 ,  2, . . . ,  d -  2} (1) 

(iii) C is not planar and is the scheme-theoretic union of a plane curve P of 
degree d -  1 (contained in the plane H )  and a line L such that there is a residual 
exact sequence 

0 --~ ZL(--1) -'+IC -'~ZCClH,H --'~ O. 
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Proof. Suppose tha t  C is extremal.  Proposi t ion 2.1 shows that  hl(Zc(n)) < 
½(d - 2)(d - 3) - # for all n C Z. Since C is not ACM, this implies tha t  g < 
I d ~ ( - 2 ) ( d - 3 )  and hl(Zc(a)) = 1, where a g - = - l ( d  2 ) ( d - 3 ) + 1 < 0 .  It 
follows tha t  hc(a) = 1 when a < 0 and h e ( a )  = 2 if a = 0. In either case, we 

n--a-1 see that  the function h'(n) = h e ( n )  - (noa) + ( 0 ) is 1-admissible and that  
g = a - 1 + ½(d - 2)(d - 3) by choice of a. Proposi t ion 1.8(b) shows that  hc  is 
given by 

{a} u {0,1,2,...,  d -  2}, 
proving (i) ~ (ii). 

Now we prove the implicat ion (ii) ~ (iii). To prove condition (iii), it suffices 
to show tha t  C is not  p lanar  but  tha t  C contains a plane curve P of degree d -  1. 
Indeed, in this case the kernel of the surjection Zc --r ZCnH,H is contained in 
ZH = O(--1) ,  and hence can be writ ten 27z(-1 ) for some subscheme Z C IP 3. 
The  snake lemma gives an exact sequence 

0 -'-9' OZ(--1 ) -'+ OC --')" OCClH,H "--')" 0 

which shows that  Z is a line (Z has degree one and O z  has no associated points 
of dimension zero). 

Assume that  C satisfies condit ion (ii). In this case C is not planar  by example 
1.5, so i t  suffices to show that  C contains a plane curve P of degree d - 1. If 
d > 4, this follows immedia te ly  from theorem 1.6(c), so we may assume that  
d = 2 or d = 3. If  d = 2, then C is either a union of two skew lines or a double 
line (because C is not planar;  see [11], corollary 1.6), hence contains a line. 

For the case d = 3, we have g = a - 1 < 0. Every curve in H(3,  - 1 )  contains 
a (planar) subcurve of degree two since H ( 3 , - 1 )  is irreducible of dimension 
12 ([11], proposi t ion 3.1) and the general member  is the disjoint union of a 
plane conic and a line. Now suppose tha t  g < - 2 .  The spectrum shows that  
hl(Zc(g + 1)) ¢ 0 while hl(Zc(g)) = 0, hence the Rao module of C has a 
generator  in degree g + 1. On the other hand,  [11] proposit ions 3.2, 3.4 and 3.5 
show tha t  if C is a curve in H(3,  g) whose Rao module  has a generator in degree 
g + 1, then C is either (a) a union of a double line meeting a reduced line in a 
double point,  (b) a union of a double line meet ing a reduced line in a reduced 
point  or (c) a tr iple line which contains a p lanar  double line; in each of these 
cases C contains a plane curve of degree two. 

In [2], §2, theorem 8, Ellia proves the  implicat ion (iii) ~ (i) under t 
addi t ional  assumptions tha t  d > 5 and char k = 0, however he makes no use 
these ex t ra  conditions. Thus ( i~)  ~ (i) and the proof  is complete. 

R e m a r k  2.3. Ell ia proves a similar  equivalence in [2], §2, theorem 8. Let X0 
denote the numerical character  of the general hyperplane section of C and 
Od,2 be the numerical  character of a length d subscheme of ~'~ which meets soi 
line in length d -  1 but  which is not contained in a line. Ellia 's  result s tates that  
if d > 5 and char k = 0, then s ta tements  (i) and (iii) above are equivalent to 
the  ~ a t e m e n t  tha t  x(C) = On,2. 

If char k = p > 0, then the condit ion that  x(C) = 0d,2 is not equivalent to 
the other conditions. Hartshorne has shown tha t  when char k = p > 0, there 
exist mult iple  lines Z of any degree d _> 2 which are not planar,  but  for which 
H fq Z is contained in a line for the general plane H (see [5], example 2.3). If Z 
is such a mult iple line and L is a line disjoint  from Z, then C = Z U L clearly 
satisfies x(C) = Od,2 but  fails condition (iii). 
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C o r o l l a r y  2.4. Let C be a curve of degree d and genus g. I f  h c ( d  - 2) ¢ 0, 
then C is A CM or C is extremal. 

Proof. We may assume tha t  d > 3, since all curves of degree d _< 2 are planar  
or extremal.  Since hc is 1-admissible, we see tha t  he(l)  > 0 for 0 < l < d - 2 
and hence he  is given by 

{a} U {0, 1 , . . . , d -  2} 

for some a E Z. Note that  a < d -  1, as otherwise hc(d  - 1) = 0 and h e ( a )  = 1 
contradicts  condition (b) of- l -admissibi l i ty .  If  a - d -  1, then C is planar  by 
example 1.5, hence ACM. 

Now suppose tha t  a < d -  2. Then in fact a < 1 (if a > 1, then h e ( l )  = 1 
and he (a )  > 1 c o n t r a d i ~  condit ion (c) of 1-admTssibility). If a ~ 0, then C is 

1 extremal  by proposit ion 2.2. If a = 1, then g = ~(d - 2 ) ( d -  3) and hence C is 
ACM by [5], proposit ion 3.5. 

Now we come to the bounds on the Rao function for curves which are not 
extremal.  The bounds in degrees n > 0 are merely a restatement  of [2], §2, 
corollary 9, but there is a sl ight improvement  for degrees n _< 0. We s tar t  with 
the lemma which gives the improvement .  

L e m m a  2.5. Let C C I? 3 be a curve of degree d and genus g which is neither 
A C M  nor eztremal. Then h l ( I c )  < l ( d  - 3)(d - 4) - g. 

Proof. Let he be the spectrum of C. Since all curves of degree d < 2 are ACM 
or extremal,  we may  assume d > 3. Corollary 2.4 shows tha t  h e ( d - -  2) = 0. 

Now we show tha t  ~~n>l(n - 1)he(n)  < ½(d - 3)(d - 4). If d = 3 or d = 4, 
then the condition h e ( d -  2) = 0 and condit ion (c) of 1-admissibili ty shows that  
this sum is zero, so we may  assume d > 5. Applying  proposit ion 1.8(e), we see 
tha t  ~ n > l ( n  - 1)he(n)  < ½(d - 3 ) ( d -  4) + 1 with equali ty if and only if hc is 
given b y -  

{1 ,2}U {0, 1 , . . . , d -  3}. 

However, this spectrum only occurs for an ACM curve: The definition of he 
gives h°(Oc(2))  = 9, hence C lies on a quadric  surface Q. By proposi t ion 1.9 
there is a height - 1  biliaison from C to a curve Co on Q. Biliaison formulas 
(see [7]) show that  Co has degree d - 2 and genus ½(d - 4 ) ( d -  5), hence Co is 
ACM by [5], proposition 3.5. It follows that  C is ACM. Thus we conclude that  
equali ty does not occur, hence ~ , ~ > l ( n  - 1)he(n)  < ½(d - 3)(d - 4). To finish, 
we use this inequality and the genus formula (1.3(c)) to obtain 

h ' (Zc )  = h° (Oc)  - 1 = - 1  + ~ he(k) (1  - k) < ~ ( d -  3 ) ( d -  4) - g .  
k < 0  

P r o p o s i t i o n  2.6. Let C be a non-planar curve of  degree d > 3 whose general 
plane section H n C is contained in a line. Then char k = p >  0 and C is a 
multiplicity structure on a line of embedding dimension two. Further, we have 
(a) h l (Zc(n) )  < ½ ( d -  3 ) ( d -  4) + 1 - g  for n e [ 1 , d -  3]. 
(b) h l (Zc(d  - 2)) < ½(d - 3)(d - 4) - g. 

(c) hl(:[c(d - 1)) < ½(d - 3)(d - 4) + 1 - g - d. 
(d) h~(Zc(n)) = 0 for n >_ --1. 
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Proof. The first part  is due to Hartshorne ([51, theorem 2.1). Let L = {x = y = 
0} be the line of support  of  C. Since C has embedding dimension two, it is a 
primitive extension (see [1]), hence the Cohen-Macaulay filtration L = C1 C 
C2 C . . .  C Ca = C gives rise to exact sequences 

0 -+ Zc,+, --+ Zc, ~Jt OL (ja) -+ 0 (2) 

for some a >_ -1 .  Since C is not planar, we must have a > 0 (see [11], lemma 
1.3). From the sequences we see that  Cj has genus ½a(J - 1)(j) + (j - 1) and 
we immediately deduce the vanishings of part. (d), since for n > - 1  and j > 1 
we have HI(OL(ja + n)) = H~(OL(ja + n)) = 0. We will use ~he sequences to 
inductively prove the bounds of parts (a),(b) and (c), but first we must make an 
observation about the maps uj. 

Since Cj is a multiplicity j-structure on L, it is clear that  (z, y)J C Ici for 
1 _< j < d. I claim further tha t  ((z, y)J- 1D Icj ) j -  1 :- (0). Since C has embedding 
dimension two, C is contained in a surface S which is generically smooth along 
C. Assume that  0 ¢ / 3  E ((x,y) j-1 D Icj) j -1.  Since k is algebraically closed, 
can be written as a product of linear factors, say fl = IIzi. Let Hi be the plane 
{zi = 0} and let Di be the irreducible component of HiDS supported on L. If Di 
is reduced for each i, then on an open set of S zi restricts to a local equation for 
L, hence the restriction of  fl to S cuts out a line of multiplicity j - 1 containing 
Cj, a contradiction. On the other hand, if Di is not reduced for some i, then the 
planar double line Z C Hi supported on L is contained in Cj, when a = -1 ,  
contradicting our assumption. Thus rank H°(uj(j))  > j q- 1 for j > 2. 

Now we inductively prove the bounds. The exact sequence 2 gives the in- 
equality 

h 1 (Zcj+~ (n)) <__ h 1 (Zc, (n)) + ja + 1 + n - rank H°(uj (n)) 

for n > - a .  For the induction base d = 3 we consider this inequality with j = 2. 
SinceC2 has genus - a -  1, proposition 2.1 shows that hl(Zc2(1)) <_ a and hence 
hl(Zc3(1)) < 3a + 2 = - g ( C j + I ) ,  proving bound (b). For bound (c), one uses 
the fact that  rank HO(u2(2)) > 3. The induction step is similar and left to the 
reader. 

R e m a r k  2.7. The proof above shows that  the bounds of proposition 2.6 apply 
to any quasiprimitive multiplicity structure on a line which does not contain a 
planar double line. 

De f in i t i on  2.8. A multiplicity structure on a line which satisfies the hypotheses 
of  proposition 2.6 will be called a Hartshorne multiple line. The existence of such 
lines was established by Hartshorne ([5], example 2.3). 

P r o p o s i t i o n  2.9. Let C be a curve of degree d > 5 which is neither planar nor 
extremal. Assume that the general plane section ~r v1c is not contained in a line, 
but intersects a line in a scheme of length d -  1. Then either" 
(1) C is a multiple line of generic embedding dimension three or 
(2) C is the union of a Hartshorne multwle line and a reduced line. 
In either case, conditions (a) and (b) of proposition 2.6 hold. 
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Proof. Let C = Cred and d = deg C. First we show that C N H is contained 
in a line for the general plane H. We may assume that d >_ 3. If C n H is 
not linear for general H, we can find H1 such that  C n H1 is reduced and not 
contained in a line. Let L1 be the (d - 1)-secant line to C n HI.  Since C n HI 
is reduced, we can find Q E (C n HI) - L1 and P E (C N HI) n L1. If  H2 is a 
general plane which contains P and Q, then C N H2 has a (d - 1)-secant line 
L2. If P E L2, then the plane spanned by L1 and L2 meets C in a scheme of 
length > g( ( L1 U L2) N C) >_ g( L1 N C) + g( L~. N C) - g( L1 N L~ N C) >_ 2 d -  3, a 
contradiction. If P ~ L~, then Q E L2. In this case we can find another general 
plane H3 (through P and Q) such that the ( d -  1)-secant line L3 to C n H3 
contains Q. In this case the plane spanned by L2 and L3 meets C in a scheme 
of length _> 2 d -  3, contradiction. Thus C n H is contained in a line for general 
H. 

If d _> 3, we can apply Hartshorne's restriction theorem ([5], theorem 2.1) 
to see that C is a multiple line, contradicting the fact that C is reduced, hence 

= 1 or d = 2. If d = 2 and C is an irreducible conic in the plane H,  then 
C C H: if not, then d e g C  N H < d -  2 and hence the general line L C H is a 
(d - 2)-secant line, a contradiction. Thus C is a line or a pair of lines. 

Case  1: C is a p a i r  o f  l ines.  Write C = L0 U Lt and let C0, C1 be the 
corresponding irreducible components of C, having respective degrees d0, dl. 
We will show that  for the general plane H,  the corresponding ( d -  1)-secant 
line L does not intersect one of the lines Li. First suppose that  L0 n L1 ~ 0 
and that these lines span the plane K. Let H be a general plane and consider 
the (d - 1)-secant line L to C n H. If L meets both lines, then L = H O K and 
deg COK = d -  1. In this case C is extremal by 2.2(iii), contradicting hypothesis. 

Now suppose that  L0 n L1 = [~. Let H be a general plane with corresponding 
( d -  1)-secant line L. Suppose that  L meets both L0 and L1 for general H.  Then 
for P E L0 and Q E L1, the general line LpQ through P and Q is a (d-1)-secant  
to C. The family of all such lines LpQ is irreducible and the condition that L 
be a di-secant line to Ci is a closed condition; it follows that LpQ is a di-secant 
line to Ci for all pairs (P, Q) for some i, say i = 0. Fixing P E L0 and choosing 
R ~ Q E L I ,  both LpQ and LpR are d0-secants to Co n K in the plane K 
spanned by P and L1. Thus Co n K is contained in both these lines, do = 1 and 
Co is a reduced line. We can choose P ~ P~ E L0 and Q E L1 such that LpQ and 
Lp,Q are both (dl - 1)-secants to C1 at, Q. If K '  is the plane spanned by Q and 
L0, then these lines are in fact (dl - 1)-secants to C1NK t. This is a contradiction, 
since a zero-dimensional projective scheme Z of degree d > 4 can have at most 
one ( d -  1)-secant line (if Z has two distinct ( d -  1)-secant fines Ra and R2, then 
e((n~ u n2) n z)  > t (n,  n z)  + t(n2 n z )  - t (n ,  n R2 n Z) > 2d - 3 > d ,  a 

contradiction). 
From the two preceding paragraphs, we conclude that  if H is a general plane 

containing the corresponding ( d -  1)-secant line L to C, then L does not meet 
both L0 and L1- If the general such ( d -  1)-secant does not meet Li, then Ci is 
reduced and HNCi_I is contained in a line. Since di-1 > 4, Ci-1 is a Hartshorne 
multiple line. 

Above we have seen that  if C consists of two lines, then C is the union of a 
reduced line L and a Hartshorne multiple line Z. Letting r = length Z n L, we 
have an exact sequence 

0 --~ ~C ~ ~.Z (~ ~'L -~ :]~ZnL "-Q* 0 (3) 
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which shows that  

hi  (~ 'c(n))  _ hi  (Zz (n ) )  -{- h°(OL(n - -  r)) 

and g(C) = g(Z) + r - 1. If  r < 1 < d - 3, the inequalities from proposit ion 2.6 
yield inequalities (a) and (b) ~ proposi t ion 2.6 for C. 

Now suppose tha t  r > 2. Let H be a general plane containing L. Since Z is 
a Hartshorne mult iple  line of degree d -  1, H n Z is contained in a line L' which 
must  equal L. Indeed, we have the inequal i ty  

e( H N Z) k e( ( L' U L ) A Z) > g( L' N Z) + t( L N Z) - e( L' fl L N Z). 

If  L' # L, then this last expression is > d, a contradict ion since deg Z = d -  1. 
Thus L' = L and we see tha t  7" = d -  1. 

Now we es t imate  hl(Zc(n)) .  Firs t  we show tha t  HtQr(n)) is surjective for 
n > 0. Since Ht,(ZL) = 0, it suffices to show this for the natural  map H,1 ( I z )  -+ 
H~,(ZZnL). Since Z N L = Z N H,  we may use the exact sequence 

0 ~ Zz(-1)  -~ Zz ~ Zznnm -+ 0 

to analyze this map.  The exact  sequence 

0 --9" O ( - - l )  ---)" ZZrl H -9" ZZAH, H --')" 0 

shows that  H ,  1 (re) can be identified with H ,  1 (¢) ,  and these maps are surjective 
in degrees > 0 by proposi t ion 2.6(d). 

Since Z O H is an effective divisor on the line L, it  is a complete intersection 
of L and a curve of degree d - 1 on the plane H.  It  follows that H°,(rr(n)) is 
surjective in degrees < d - 2  and an easy calculat ion shows that  rank H 1(¢(n)) ---- 
hl(ZznH,H(n)) = d -  n - 2 for 0 < n < d - 2. Thus we find that  

h 1 (Zc(n)) = h 1 (•z(n)) - d + n + 2 

for 0 < n < d - 2. For n _< d - 4, we obta in  the desired bound from proposi t ion 
2.6(a). For n = d - 3 we use 2.6(b), and the bound for n = d -  2 follows from 
2.6(c). 

Case  2: C is a l l ne .  Let L be the suppor t  of C. Let {Ci} be the Cohen- 
Macaulay filtration for C. Let H be a general plane with corresponding ( d -  1)- 
secant line L to C n H.  The residual exact sequence with respect to L in H can 
be writ ten 

0 ~ I p ( - 1 )  --+ ICnH ~ ~.CNL,L ""at 0 

where P is the suppor t  of C N H.  If  z is the  equation for L in H and w is the 
equation of another line through P ,  then the sequence shows that  we may  write 
J~CAH,H ~-~ ( z2, ZW, wd-l) ,  Restr ic t ing the Cohen-Macaulay filtration to H gives 
the sequence of ideals 

(~,w) ~ Cz, w) ~ ~ (z2, zw, ~ 3) ~ . . .  ~ (z2,z~,w ~-~) 

and we conclude tha t  C2 = L (2) and d e g C j  = j + 1 for j > 2. For j _> 2, we 
have exact sequences 

0 -+ Zc,÷~ ~ Zc, ~40L(a~) -+ 0 
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and hence inequalities 

hl(•c,+,(n)) < hl(Zcj(n))  + h°(OL(aj + n)) - rankH°(uj(n)).  (4) 

It is evident that  (x ,y)  j C Ic,. I claim tha t  ((x,y) j-1 A Ic j ) j -1  = ( 0 )  for 
j - 1  j > 3. Letting 0 5£/3 E ( (x ,y ) j - i ) j -1 ,  we may  write/3 = / / 1  zi, where the zi 

are linear factors which give rise to corresponding planes Hi. Since C is neither 
planar nor extremal, we have deg Hi f] Cj < j for each i. We can now choose a 
general plane K meeting C properly in a point P such that  deg(Hi [q C A K) < j 
for each i. Write J = ICjnK,K = (x2,xy, Y i) as above (x is tile equation of the 
unique j-secant line). By construction, the image zi of zi in J is not a multiple of 
x, so we may write zi = u i (y+aix )  where ui is a unit. Since fl E J ,  we can add 
multiples of x 2 and xy to see that  ya- I  E J .  This gives a contradiction, since the 
ideal (x ~, xy, yi-  l) defines a scheme of length j ,  while C A K has length j + 1. 
It  follows that  rank H°(uj( j))  >__ j + 1 for j > 2. 

Letting gj denote the genus of Cj, the exact sequence above show that  9j+l = 
gj - -  aj - -  1. Combining the fact tha t  rankH°(uj( j ) )  > j + 1 for j > 2 with the 
inequalities 4 above, one can show by induction on j > 3 that  

hl(Ec,(n)) << l ( j -  2)(j  - 3 )  + 1 - g j  

for l < n < j - l a n d  

h l ( I c , ( j  - 1)) < l ( j  _ 2)(j - 3) + 1 - gj - j. 

Taking j = d -  1 proves inequalities (a) and (b) of proposition 2.6 for C, finishing 
the proof. 

E x a m p l e  2.10. Examples of both cases (1) and (2) of proposition 2.9 exist. Let 
L C D3 be a line and let Z be a Hartshorne multiple line supported on L. Letting 
C be the scheme-theoretic union Z U L (2) gives a curve satisfying the hypotheses 
of proposition 2.9 which falls into case (1). For case (2), we can simply take the 
disjoint union of Z and another line L'.  

T h e o r e m  2.11. Let C C IP 3 be a curve of degree d > 4 and genus g which is 
neither A CM nor extremal. Then 

i i - ( d - 3 ) ( d - 4 ) - g + n  i / g - l ( d - 3 ) ( d - 4 ) + l _ < n < l  
hi (2-c(n)) < ( d -  3)(d 4 ) + l - g  / f l < n < d - 3  

½ ( d - 2 ) ( d  3 ) + 1  g - n  i f d - 3 < n < ½ ( d - 2 ) ( d - Z ) - g  
1 0 /] 'n > ~ ( d - 2 ) ( d - 3 ) - g  

Proof. Migliore's lemma (see [8], l emma 0.1 and proposition 2.3) shows that  the 
Rao function is strictly increasing on [r~, 0] and strictly decreasing on [ d -  2, ro], 
hence it suffices to prove these bounds for n E [0, d -2 ] .  In particular, the bounds 
in degrees n < 0 follow from lemma 2.5, so we reduce to proving the bound for 
n E [ 1 , d - 2 ] .  If d > 5 and the general plane section C A  H meets no line in a 
scheme of length > d - 1, then Ellia's proof of [2], §2, proposition 9 gives the 
bounds above in degrees n > 1. If d > 5 and the general plane section C O H 
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meets some line in a scheme of length :> d - 1, then propositions 2.6 and 2.9 
give the bounds on [1, d -  2]. 

To finish, we need to prove the bounds for n E [ 1 , d -  2] when d = 4. The 
bound for n = 1 follows from proposi t ion 2.1, so it suffices that  hl(Zc(2)) < 
- g .  Theorem 1.6(a) forces he (4 )  = 0, hence proposit ion 1.3(e) shows that  
h2(Zc(2)) = 0. Comput ing the Euler characteris t ic  of 2"c(2), we reduce to show- 
ing that  hO(Zc(2)) <: 1. If this is not the case, then C lies on two quadric surfaces 
which share a common plane H.  (otherwise the quadrics are independent,  when 
C must equal their complete intersection by reason of degree). In considering 
the residual exact sequence 

0 --+ Z z ( - t )  --+ Zc  --+ Zcnn,n  --+ 0 

with respect to the plane H,  we see tha t  Z is contained in two dist inct  planes, 
hence has degree < 1. It follows tha t  either C is contained in H (when C is 
ACM) or contains a plane curve of degree 3 (when C is extremal by proposition 
2.2(iii)), a contradiction. This  finishes the proof. 

D e f i n i t i o n  2.12.  We say tha t  a curve C C p3 of degree d and genus g is 
subextremal if C is neither ACM nor ext remal  and the inequalities of proposition 
2.11 above are all equalities. 

C o r o l l a r y  2.13.  Let C be a subextremal curve of degree d and genus g. Then 
d >_ 4 and g < ½(d-  3 ) ( d -  4). 

Proof. The bounds of theorem 2.11 and theorem 2.1 are identical for curves of 
degree d = 2 or d = 3, hence the curves achieving equali ty are already extremal.  
It follows tha t  d >__ 4. Since h i ( I v ( n ) )  < ½(d - 3)(d - 4) + 1 - g for all n, the 
fact that  a subextremal  curve is not  ACM shows tha t  g < ½(d - 3)(d - 4). 

T h e o r e m  2.14.  Let C C p3 be a curve of degree d and genus g. Then C is 
subextremal if  and only if C is obtained from an extremal curve by an elemen- 
tary biliaison of height 1 on a quadric surface Q. If  one (hence both) of these 
conditions hold, then C has spectrum 

{ g -  l ( d - 3 ) ( d -  4) + 1} U {0, 1 2 , 2 , . . . , d -  3}. 

Proof. If C is obtained from an ext remal  curve by an elementary biliaison of 
height 1 on a quadric surface, it  is easy to calculate that  C is subextremal.  

1 Conversely, let C be a subext remal  curve and set a = g - 5(d - 3 ) ( d -  4) + 1. 
Corollary 2.13 shows tha t  a < 1. Since C is subextremal ,  h~(:[c(l)) = l - a + 1 
for a < l < 1. Since C is not planar ,  the exact  sequence 

0 -+ R c  --~ Ac  -4 Hl . ( Ic)  ~ 0 

shows that  h°(Oc(l)) = l - a -{- 1 for a < l < 0, h°(Oc(O)) = - a  Jr 2, and 
h°(Oc(1)) = - a  -{- 6. Using its definition, we see tha t  the spectrum of C takes 
the form 

{a} u {0, 

Applying proposit ion 1.8(d), we see tha t  the spect rum of C is given by 

{a} u {0,1 2, 3 , . . . ,  d - 3t. 
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Having computed the spectrum, proposition 1.3(d) and duality show that 
h2(Zc(2)) = ½ ( d -  5 ) ( d -  6) when d _> 5 and h2(Zc(2)) = 0 when d = 4. The 
definition of subextremal shows that  h 1 (:Yc(2)) = ½ ( d -  3 ) ( d -  4 ) +  t - g  when 
d >_ 5 and hl(Zc(2))  = - g  when d : 4. From the degree and genus we compute 
that  X(Zc(2)) = 9 - 2d + g. Putt ing these three pieces of information together, 
we find that h°(Zc(2)) = 1 and hence C lies on a unique quadric surface Q. Since 
hc(1)  > 2, proposition 1.9 applies to show that  C is obtained from a curve Co 
by an elementary biliaison of height h > 0 on Q. If C1 is obtained from Co by 
an elementary biliaison of height h - 1 on Q, then C is obtained from C1 by an 
elementary biliaison of height 1. Calculating the degree, genus, and Rao function 
for C1 shows that C1 is extremal. 

E x a m p l e  2.15. Unlike the case of extremal curves, subextremal curves are not 
determined by their spectrum. For d _> 5 and g < l ( d -  3 ) ( d -  4), let Z be a 
double line of genus g' = g - d - l ( d -  2) (d - 5). If C is obtained from Z by an 
elementary biliaison of height 1 on a surface of degree d - 2, then C has degree 
d and genus g. If C '  is a subextremal curve of degree d and genus 9, then the 
Rao functions of C and C '  are identical in degrees < 1 and both have spectrum 
of theorem 2.14. 

R e m a r k  2.16. The example above (and the following example) show that  the 
statement of [2] §2 proposition 10 does not hold as stated. The stronger bounds 
on the Rao module suggested there hold for curves C of degree d > 7 whose 
general plane section C n H does not meet a line in a scheme of length _> d - 2. 
The problem is that  there are curves C whose general plane section meets a line 
in length d - 2 but which are not subextremal. 

E x a m p l e  2.17. In the previous example we found curves which were not subex- 
tremal, but which achieved the bound of theorem 2.11 in degree 1 and had the 
same spectrum as the subextremal curves. In this example we give curves which 
are not extremal, achieve the bound of theorem 2.11 in degree 1, and give a 
different spectrum. Specifically, we will show that  for any - 1  < b < a and d >_ 5 
there exists a quasiprimitive multiple lines Z with spectrum 

{ - a , - b , O ,  1 , 2 , . . . , d -  3}. 

When b = - 1 ,  we get the subextremal spectrum of theorem 2.14. 
We construct the curve Z in two steps. Let X be a planar multiplicity ( d - 2 ) -  

line with ideal I x  = (z, yd-2). The support of X is the line L given by {z = y = 
0}. Let h, k be a two homogeneous polynomials in SL of degrees 1 + b, b + d - 2 
which have no common zeros along L. These define a map ¢ : Ix  -+ SL (b) by 
z ~ h ,y  '~-2 ~ k. This map sheafifies to a surjection u : :Zx ~ OL(b) whose 
kernel is the ideal sheaf of a quasiprimitive multiplicity (d - 1) structure Y on 
L. It is easy to check that Iy  = (x ~, zy,  y d - 1  x k -  yd-2h). 

Iv  has an S-presentation 

S ( - 3 ) @ S ( - d ) @ S ( - b - d )  2 ¢-~ S ( -2 )2  @ S ( - d +  l ) @ S ( - b - d +  l ) --+ Iy  --+ 0 (5) 

where ¢ is given by the matrix 
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0 0) 
--x yCl-2 yd-3 h - k  

0 - x  0 h 
0 0 x y 

Tensoring ¢ with SL shows tha t  

(6) 

i y  ® SL ~-- SLICk)(--2) ~ (h, k )Cb - 1) • SL ( - b  - d + 1) 

and hence Zy @{~L ~ OZ(k)nL(--2) (~ OL(b -- 1) @OL(--b -- d-t- 1) (the injection 

8 : (h, k) ~ SL has cokernet of  finite length, hence ~" is an isomorphism). 
Now let p, q be homogeneous polynomials in SL of degrees a+ l - b ,  a + b + d -  1 

which have no common zeros along L. Using the identification above, (p,q) 
defines a map  Ir --+ SL (a) whose cokernel has finite length. Sheafifying this 
map  gives a surjection w : Zy --+ OL(a) whose kernel is the ideal sheaf of a 
quasiprimitive multiplicity d-structure Z on L. 

To check that  Z has the spectrum claimed in the proposition, note that  the 
construction above gives exact sequences 

0 - ~ Z r  ~ Z x  ~ OL(b) --r 0 

0 .-+ ZZ -'-+Iy --~ OL(a) --+ O. 

Since X is planar, Hx, CZx) = 0 and Hl.(u) is the zero map. The first sequence 
shows that  HI.(Zy) is either 0 or generated by an element of degree -b .  Since 
b _< a, we have tha t  HI(OL(a -- b)) = O, hence Hl.(w) is the zero map. In 
particular, we now obtain short  exact sequences 

0 ~ Hl(OL(b)) --). Hl(Oy)  ~ Hl (Ox)  .-.). O 

0 -.-). HI(OL(a)) ~ HI(Oz)  --). Hl(Oy)  ..-ff O. 

Since X is a plane curve of degree d - 2, it has spectrum 

{0, 1,2 . . . .  , d - 3 } .  

Taking second difference functions of the two exact sequences gives the spectrum 
claimed. The  genus of Z is ½ ( d - 3 ) ( d - 4 ) - a - b - 2 ,  so the bound on hl(Zz(1)) 
given by theorem 2.11 is a + b + 3. Since H°(u(x))  ~: O, the exact sequences 
above show that  hl(Zz(1)) = a + b + 3. 

E x a m p l e  2.18. For a more complete example,  consider curves of degree 5 and 
genus 0. In his PhD thesis, Rich Liebling uses generic initial ideals to find all 
possible Rao functions for these curves (see [6], §5.2). Here is the list: 
(a) Extremal  curves in H(5 ,0 )  have Rao module of type {1 ,2 ,3 ,3 ,3 ,3 ,2 ,1}  
start ing in degree - 2 .  This family forms an irreducible component  of dimension 
24. 
(b) Subextremal curves have Rao module of type {1, 2, 2, 1} start ing in degree 
0. The  closure of this family is an irreducible component  of dimension 20. The 
general subextremal curve is a disjoint union of a conic and a plane cubic. 
(c) The disjoint unions of elliptic quartic curves and lines forms an irreducible 
family of dimension 20 whose closure is an irreducible component  of  H(5, 0). 
These curves have Rao module of type {1, 2, 1} start ing in degree 0. Curves 
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f rom example  2.15 above also have  this  Rao funct ion.  
(d) T h e  general  s m o o t h  ra t iona l  quin t ic  curves give an irreducible family  of  
d imens ion  20 whose closure is an i r reducible  componen t .  The  corresponding 
Rao  modules  have type  {2, 1} s t a r t ing  in degree 1. 
(e) The  curves of type  (4, 1) on a s m o o t h  quadr ic  surface form an i rreducible  
fami ly  of d imens ion  18. The i r  Rao  modules  have type  {2, 2) s ta r t ing  in degree 
1. Th is  family  lies in the  closure of  family  (d) above.  

R e m a r k  2 .19 .  I t  seems reasonable  to expect  tha t  the  closure of  the subex- 
t r e m a l  curves form an i rreducible  componen t  in H(d,g)  for d > 4 and g __ 
½(d - 3)(d - 4), as happens  in the  example  above.  
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