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DEFORMATIONS OF SPACE CURVES:

CONNECTEDNESS OF HILBERT SCHEMES

Warmly dedicated to Paolo Valabrega on his 60th birthday

Abstract. We survey the Hilbert schemes Hd,g of Cohen-Macaulay
space curves having degree d and genus g, giving their geography
and the current state of the connectedness problem. Focusing on a
specific example, we then describe the irreducible families of curves
in H4,−99 and explain the connectedness, paying special attention to
certain deformations on the double quadric surface. We close with
some new results, determining which families of degree four curves
are subcanonical and showing how some examples of Chiantini and
Valabrega fit into this classification.

1. Introduction

Early in the development of scheme theory in algebraic geometry, Grothendieck
constructed the fine moduli space for flat families of subschemes in Pn, known as
the Hilbert scheme [15]. Since the Hilbert polynomial is constant for flat families
over a connected base, the Hilbert scheme Hilbn can be written as a disjoint
union of pieces Hilbn

p(z) indexed by the corresponding Hilbert polynomials. As
a fine moduli space, these schemes come equipped with universal flat family

X ⊂ Hilbn
p(z) × Pn
↓

Hilbn
p(z)

(1)

having fibres with Hilbert polynomial p(z) such that for any flat family

Y ⊂ T × Pn
↓
T

(2)

with fibres of Hilbert polynomial p(z), there is a unique map T → Hilbn
p(z)

such that diagram (2) is obtained from diagram (1) by pull-back. Thus one
studies the Hilbert scheme by producing flat families. As Grothendieck showed
that Hilbn

p(z) is projective over SpecZ, the set of all projective subschemes is
encoded by equations with integer coefficients.
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Since flat families over a connected base have constant Hilbert polyno-
mial, it’s natural to ask whether the converse is true: given two subschemes in
Pn with the same Hilbert polynomial, is there a connected flat family of which
both are a member? Equivalently, is the Hilbert scheme connected? This was
answered by Hartshorne in his PhD thesis [19].

Theorem 1. (Hartshorne, 1962) For any p(z) ∈ Q[z] and any field k, the
Hilbert scheme Hilbn

p(z) for closed subschemes X ⊂ Pnk with Hilbert polynomial
p(z) is connected whenever it is non-empty.

The geography is an important aspect of any moduli problem: for which
natural invariants of the problem is the moduli space non-empty? There are
at least three characterizations of the polynomials p(z) ∈ Q[z] for which there
is a subscheme V ⊂ Pn having Hilbert polynomial p(z). One follows from
Macaulay’s theorem on the growth of the Hilbert function of a standard k-
algebra [26], another is a consequence of Hartshorne’s thesis [19] and a third
occurs naturally from Green’s interpretation of Macaulay’s bound in terms of
restricted linear series [14]: a summary and comparison is given in [3].

We now specialize to space curves: take n = 3 and let Hilbd,g denote the
Hilbert scheme of subschemes in P3 with Hilbert polynomial p(z) = dz + 1− g,
the curves of degree d and arithmetic genus g. Classically one is interested in
the open subscheme

H0
d,g ⊂ Hilbd,g

corresponding to smooth connected curves. The geography for this problem (the
pairs (d, g) for which H0

d,g is non-empty) was known to Halphen and completely
proved by Gruson and Peskine a hundred years later [16]. As to connectedness,
we have the following results of Harris [18] and Ein [9].

Theorem 2. (Harris, 1982) H0
d,g is irreducible if d ≥ 5

4g + 1.

Theorem 3. (Ein, 1986) H0
d,g is irreducible if d ≥ g + 3.

Example 1. The Hilbert schemes H0
d,g are not connected in general: the

smallest example is H0
9,10 [20, IV, Ex. 6.4.3], which has two connected compo-

nents, the curves of type (3, 6) on a smooth quadric and complete intersections
of two cubics. More generally, H0

d,g is not connected for d ≥ 9 and g = 2d− 8.

Indeed, the curves C of type (3, d−3) on a smooth quadric satisfy h0OC(2) = 9
and h0IC(2) = 1 while curves D not lying on a quadric satisfy h0OD(2) ≥ 10
and h0ID(2) = 0. By semicontinuity, it follows that the curves of type (3, d−3)
form a connected component of H0

d,2d−8. Note that there exist other compo-
nents, as such curves exist on a cubic or quartic surface. Guffroy conjectures
that H0

d,g is irreducible for g < 2d− 8 (i.e. d > 1
2g+ 4) and proves it for d ≤ 11

[17]. If true, the conjecture would strongly improve the results above.
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The subject of this survey is yet a third moduli space, namely the Hilbert
scheme of locally Cohen-Macaulay curves without isolated points, the pure
one-dimensional subschemes of P3 of degree d and genus g. Following Martin-
Deschamps and Perrin [27, 28], we denote these Hilbert schemes by Hd,g, which
sit between the two extremes considered above:

H0
d,g ⊂ Hd,g ⊂ Hilbd,g.

The Hilbert schemes Hd,g are natural from the perspective of liaison theory,
which has seen a great deal of activity over the last 25 years: Migliore’s book
[31] provides an excellent survey of this work. The point is that liaison preserves
the property of being locally Cohen-Macaulay [31, Cor. 5.2.12] but does not
preserve geometric properties such as smoothness, irreduciblity, or reducedness.
On the other hand, even the most general locally Cohen-Macaulay curves can
be brought to the classical curves through a sequence of liaisons, as proved by
Rao [38, Thm. 2.6].

Theorem 4. (Rao, 1979) Every liaison class contains a smooth con-
nected curve.

Thus the schemes Hd,g are the result of starting with the smooth con-
nected curves and closing off under the equivalence relation of liaison. In view
of the connectivity results above, the following question is natural:

Problem 1. For which is pairs (d, g) is Hd,g connected?

Remark 1. This does not follow in any easy way from the proof of
Theorem 1, as Hartshorne constructs deformations which typically pass through
(non-reduced) subschemes having embedded points. The real question here is
whether curves with embedded points can be avoided.

In addressing the status of Problem 1, we begin with the geography of
locally Cohen-Macaulay space curves in §2. This includes (a) the determina-
tion of the pairs (d, g) for which Hd,g is non-empty and (b) the cohomological
bounds leading to the special families of extremal and subextremal curves. The
extremal curves become prominent in §3 when we give connectedness results for
the Hilbert schemes. We follow this up with an example in §4, describing all
the irreducible components of the Hilbert scheme H4,−99 and explaining why
this scheme is connected. In §5 we discuss deformations of curves on a double
surface and show how a disjoint union of two double lines can be deformed to
a multiplicity four line without adding embedded points, a crucial part of the
proof that H4,−99 is connected. Finally, in §6 we determine which families of
degree four curves are sub-canonical. In particular, we show how examples of
Chiantini and Valabrega [5, Ex. 3.1 and 3.2] fit into our classification.

The author thanks E. Cabral Balreira for his help with making the figures
and Mario Valenzano for corrections on the first draft.



4 S. Nollet

2. The Geography of Cohen-Macaulay Curves

In this section we describe the pairs (d, g) for which our Hilbert schemes Hd,g

are non-empty. As a byproduct of the proof, we will encounter the extremal
curves, which play an important role in the following section. The starting point
is the following theorem [29, Thm. 2.5 and Cor. 2.6].

Theorem 5. (Martin-Deschamps and Perrin, 1993) Assume char k = 0.
If C ∈ Hd,g is non-planar, then the Rao function h1IC(n) is bounded by the

function depicted in Figure 1.1. In particular, g ≤
(
d−2
2

)
.

Figure 1.1: Bound of Theorem 5 on h1IC(n) for non-planar curves

This generalizes to curves in higher dimensional projective space [7],
though the bounding function is more complicated. The characteristic zero
hypotheses is used to prove that if C is a curve of degree d ≥ 3 not contained in
a plane, then the general hyperplane section H ∩ C is not contained in a line.
While this fails in characteristic p > 0 [21, Ex. 2.3], the bound on cohomology
still holds [32, Prop. 2.1], as does the bound on the genus [21, Cor. 3.6]:

Theorem 6. (Hartshorne 1994) The Hilbert scheme Hd,g is nonempty
if and only if either

(a) d ≥ 1 and g =
(
d−1
2

)
or

(b) d ≥ 2 and g ≤
(
d−2
2

)
.

One way to prove that Hd,g is non-empty for g ≤
(
d−2
2

)
is to observe that

there are curves which achieve equality in Theorem 5 [28, Prop. 0.5]:

Theorem 7. (Martin-Deschamps and Perrin, 1996) For all d ≥ 2 and
g ≤

(
d−2
2

)
, there are curves C ∈ Hd,g giving equality in Theorem 5 for all n.
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The curves of Theorem 7 are called extremal curves and have some
interesting properties. For example, the subset of extremal curves forms an
irreducible component E ⊂ Hd,g [28, Thm. 3.7], which is non-reduced except

when d = 2 (double lines), g =
(
d−2
2

)
(ACM extremal curves) or d = 3 and

g = −1 [28, Thm. 5.3].

Remark 2. The following are equivalent:

1. C is an extremal curve.

2. C is a minimal curve for a complete intersection module annihilated by
two linear forms (this allows one to write the total ideal and minimal
resolutions for extremal curves [28, Prop. 0.5, 0.6 and Thm. 1.1]).

3. C is non-planar of degree d and contains a planar subcurve of degree d−1
([11, §2, Thm. 8] or [32, Prop. 2.2]).

Assuming char k = 0, Ellia observed [11, §2, Prop. 9] that a curve
which is neither planar nor extremal satisfies even stronger bounds on the Rao
function. Using Schlesinger’s spectrum of a curve [40], this bound was refined
while removing the characteristic zero hypothesis [32, Thm. 2.11]:

Theorem 8. (Ellia and Nollet, 1997) If C ∈ Hd,g is a non-planar and
non-extremal, then the Rao function h1IC(n) is bounded by the function depicted
in Figure 1.2. In particular, g ≤

(
d−3
2

)
+ 1.

Figure 1.2: The bound of Theorem 8 on h1IC(n) for non-extremal curves

A curve C ∈ Hd,g is subextremal if it achieves the bound of Theorem
8 for all n. A curve C ∈ Hd.g is subextremal if and only if it is a height
one elementary biliaison of an extremal curves C ′ ∈ Hd−2,g+3−d on a quadric

surface [32, Thm. 2.14] and hence exist for all d ≥ 4 and g ≤
(
d−3
2

)
+ 1:
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letting S ⊂ Hd,g denote the family of subextremal curves, the universal biliaison
scheme of Martin-Deschamps and Perrin shows that S is irreducible. Indeed, if
E ⊂ Hd−2,g+3−d is the extremal component, we can consider the set B of triples
(C,C ′, Q) for which C is a height one biliaison of C ′ on the quadric surface Q.
The natural projections

B
p1→ S

p2 ↓
E

are smooth and irreducible [27, VII, §4], hence irreducibility of E implies irre-
ducibility of S.

Remark 3. Given Theorem 5 and Theorem 8, one might expect that
curves which are neither planar nor extremal nor subextremal should satisfy
even stronger bounds. This fails, however: there are curves which give equality
in Theorem 8 for some values of n, but not others [32, Ex. 2.15 and 2.17].

Remark 4. As the extremal curves form an irreducible component, one
might expect that the closure of the subextremal curves S ⊂ Hd,g to form an
irreducible component as well (though S itself is not closed: its closure contains
extremal curves [34]). Uwe Nagel has informed me that this is indeed true and
is current joint work between he, Nadia Chiarli and Silvio Greco.

Figure 1.3: The geography for locally Cohen-Macaulay curves
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3. Connectedness Results

In this section we summarize the current state of Problem 1. We will begin with
some general results about families of curve that can be deformed to extremal
curves and then proceed to particular ranges. In terms of the geography of
Cohen-Macaulay curves (Figure 1.3), we will see in Theorems 10 and 11 that
Hd,g is connected for pairs (d, g) near the boundaries at the top and to the left.

Many families of curves can be deformed to extremal curves (without
passing through curves with embedded points).

Theorem 9. The following families of curves can be deformed in Hd,g

to extremal curves.

(1) Disjoint unions of lines

(2) Smooth rational curves

(3) Smooth connected curves with d ≥ g + 3

(4) ACM curves

(5) The disjoint union of an extremal curve and a line

(6) The union of an extremal curve and a line meeting at a point

(7) Any curve in the liaison class of an extremal curve

Proof. (1)-(6) are results of Hartshorne [22] and (7) is due to Perrin [37].

When the arithmetic genus g is large relative to the degree d, the Hilbert
scheme Hd,g has few irreducible components, making it relatively easy to check
connectedness. The following result is the work of several authors.

Theorem 10. If g ≥
(
d−3
2

)
− 1, then Hd,g is connected.

Proof. According to Theorem 6, either g =
(
d−1
2

)
(in which case Hd,g is the

irreducible family of plane curves) or g ≤
(
d−2
2

)
. In the range

(
d−3
2

)
+ 1 < g ≤(

d−2
2

)
, Theorem 8 shows that Hd,g = E is the family of extremal curves, which

is irreducible by the work of Martin-Deschamps and Perrin [28].

There are three more arithmetic genre to check, but things become more
delicate, as Hd,g is not irreducible.

If g =
(
d−3
2

)
+ 1, then Theorem 8 shows that each curve C ∈ Hd,g is

extremal or ACM, since the bound on h1IC(n) is zero. Conversely each ACM
curve in Hd,g is subextremal by definition, hence Hd,g = E ∪ S consists only
of extremal and subextremal curves. Finally E ∩ S 6= ∅ by [34] and Hd,g is
connected.
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If g =
(
d−3
2

)
, then the non-extremal curves C satisfy h1IC(n) ≤ 1. Samir

Aı̈t-Amrane showed [1] that Hd,g has three irreducible components for large d:
(a) extremal curves, (b) subextremal curves and (c) bilinks of height one from
a double line of genus −1 on a surface of degree d − 2. Both families (b) and
(c) specialize to family (a) by Theorem 9 (7), but Samir’s method was to use
the triads developed by Hartshorne, Martin-Deschamps and Perrin [23].

If g =
(
d−3
2

)
− 1, then the non-extremal curves C satisfy h1IC(n) ≤ 2.

Irene Sabadini showed [39] that Hd,g has 4 irreducible components for d ≥ 9:
(a) extremal curves, (b) subextremal curves, (c) bilinks of height one from a
double line of genus −2 on a surface of degree d−2 and (d) disjoint unions of an
ACM extremal curve of degree d− 1 and a line. Families (b) and (c) specialize
to (a) by Theorem 9(7) and family (d) specializes to (a) by Theorem 9(5).

Theorem 11. For d ≤ 4, Hd,g is connected whenever it is non-empty.

Proof. Since Hd,g is irreducible for g =
(
d−1
2

)
, we may assume that d ≥ 2 and

g ≤
(
d−2
2

)
by Theorem 6. There are just three cases to consider.

If d = 2, then H2,g consists only of double lines, which were classified by
Migliore [30]. These form an irreducible family.

If d = 3, then H3,g has exactly d 4−g3 e irreducible components, most con-
sisting only of triple lines. In this case there are curves which lie in the inter-
section of all the irreducible components [33, Prop. 3.6 and Remark 3.9], hence
H3,g is connected.

Finally if d = 4, then H4,g has roughly g2

24 irreducible components, most

of the families consisting of 4-lines (there are roughly −3g2 families whose gen-
eral member is not supported on a line). In work of the author and Enrico
Schlesinger [36], these components were classified and connectedness was estab-
lished through a variety of methods (see next two sections). One new feature
to this example is the existence of an irreducible component which does not
intersection the extremal component: the general curve is a multiplicity four
structure on a line which has generic embedding dimension three.

Looking at the number of irreducible components of the Hilbert schemes,
one might guess that Hd,g has on the order of gd−2 irreducible components, at
least for g << 0. For degrees d = 2 and d = 3, the reason for the large number
of components is the number of different families of multiplicity structures on a
line. Will this behavior persist for larger d? At the other edge, it there are few
components for g ∼

(
d−3
2

)
. Can one find an upper bound on the number?

Problem 2. How many irreducible components does Hd,g have?

(a) For g << 0? Is it of order gd−2? Can one show this is a lower asymptotic
bound?

(b) For g near
(
d−3
2

)
? Can one find an upper bound?
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4. The Hilbert scheme H4,−99

In this section we fully describe an example, the Hilbert scheme H4,−99. We list
the irreducible components and their dimensions, as well as describing the gen-
eral curve in the corresponding family. Complete proofs for general arithmetic
genus g can be found in [36].

Table 1.1: The 529 Irreducible Components of H4,−99
Label General Curve Dimension

G1

Extremal curves

D ∪ Z
D smooth conic

pa(Z) = −102, length(D ∩ Z) = 4
213

G2

Subextremal curves

L1 ∪2P Z ∪2Q L2

L1 ∩ L2 = ∅
pa(Z) = −101

211

G3

D ∪2P Z
D smooth conic
pa(Z) = −100

211

G4 thick 4-line 306
G5 double conic 211

G6
Z ∪2P L1∪̇L2

pa(Z) = −99
209

G7,a

1 ≤ a ≤ 33

W ∪3P L
W quasiprimitive 3-line

of type (a, 99− 3a)
209− a

G8,a

1 ≤ a ≤ 32

W ∪2P L
W quasiprimitive 3-line

of type (a, 98− 3a)
208− a

G9,a

1 ≤ a ≤ 32

W ∪̇L
W quasiprimitive 3-line

of type (a, 96− 3a)
206− a

G10,m

0 ≤ m ≤ 49

Z1∪̇Z2

pa(Z1) = −m
pa(Z2) = m− 98

206 + ε(m)

G11,a,b

1 ≤ a ≤ 16
0 ≤ b ≤ 48− 3a

Quasiprimitive 4-line
of type (a, b, c = 96− 6a− b) 205− 3a

Remark 5. The following refer to Table 1.1.

(a) Notation: L always denotes a line, D a smooth conic, Z a curve of degree
two with given genus, and W a triple line.

(b) In family G10,m, we set ε(m) = 0 for m > 1, ε(1) = 1 and ε(0) = 3.
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(c) Most of the families consist of multiplicity structures on a line.

(1) The thick 4-lines that occur in family G4 are curves C with linear
support L such that IC ⊂ I2L (they contain L(1)).

(2) A multiplicity structure C of degree k on a line L which is not thick
is called quasi-primitive [2] and has a Cohen-Macaulay filtration

L ⊂ Z2 ⊂ Z3 ⊂ · · · ⊂ Zk = C

with quotients IL/IZ2
∼= OL(a), IZ2

/IZ3
∼= OL(2a+ b) and (if necessary)

IZ4
/IZ3

∼= OL(3a + c) with b ≤ c. The numbers a, b and c give the type
of the multiple line: thus a double line has type a, a triple line has type
(a, b) and a quadruple line has type (a, b, c). We do not give the type for
double lines, because the type is determined by the genus.

(d) The last five families listed come with parameters, meaning that there
are several irreducible components. For example, there are actually 32
irreducible families of curves of G9,a (each consists of a disjoint union of
a triple line and a reduced line), one for each 1 ≤ a ≤ 32. Similarly there
are 33 families of type G7,a, 32 of type G8,a, 50 of type G10,m and 376 of
type G11,a,b, for a total of 529 irreducible components.

(e) We prove connectedness by the following plan:

G9,a G10,0/G10,1 G6 G3

↘ ↓ ↙ ↓
G8,a → E = G1 ← G2 → G4 ← G11,a,b

↗ ↑ ↑
G7,a G5 G11,0,m−1 ⊂ G10,m>1

Each arrow represents a specialization of curves. The extremal component
G1 draws several arrows. The arrows G6 → G1, G8,a → G1, G9,a → G1

and G10,0/G10,1 → G1 follow from Theorem 9, parts (5) and (6) and
results in [33]. The arrows G2 → G1 and G5 → G1 can be found in
[25], as the relevant curves lie on a double plane. The arrow G7,a → G1

is obtained by actually writing down equations of the deformation. The
arrows G2 → G4 and G3 → G4 arise by varying a resolution for the Rao
module [36, Prop. 4.2 and 4.3], while the arrow G11,a,b → G4 arises by
a tricky deformation of a resolution for the ideals, using the Buchsbaum-
Eisenbud criterion [4] to check exactness [36, Prop. 2.4].

Finally, the curves in G10,m with m > 1 consist of disjoint unions of
double lines of genus < −1. As the support of these curves lies on a
smooth quadric, the curves themselves lie on a double quadric. On this
surface we were able to deform these curves to a quasi-primitive 4-line in
G11,0,m−1 on a fixed double quadric: we explain this in the next section.
The quasi-primitive 4-lines deform to G4 as in arrow G11,a,b → G4.
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5. Curves on the double quadric

Hartshorne and Schlesinger gave a satisfying classification of curves lying on
the double plane [25], describing all the irreducible components and showing
connectedness. Their primary tool was a certain triple associated to such a
curve (Definition 1 below). In this section we describe joint work of Enrico
Schlesinger and the author [35], which uses these triples on a double surface to
give a criterion for when the underlying triple of a curve can be spread out in a
flat family. As an application we obtain in Example 3 (a) the inclusion

G11,0,m−1 ⊂ G10,m (3)

needed to show connectedness of H4,−99 (see Remark 5 (e)).

To set the scene, let F be a smooth surface on a smooth threefold T with
doubling X = 2F . More generally one can take X to be a ribbon over F in the
sense of Eisenbud and Bayer [10].

Definition 1. For each curve C ⊂ X, the triple T (C) = {Z,R, P} is
defined as follows:

1. P is the support of C, the one dimensional part of C ∩ F .

2. R is the curve part of C residual to P .

3. Z is the zero-dimensional part of C ∩ F , so IC∩F,F ∼= IZ,F (−P )

Remark 6. If T (C) = {Z,R, P}, then Z ⊂ R is zero-dimensional and
Gorenstein [35, Prop. 2.1] and R ⊂ P are divisors on F . The arithmetic genus
is given by

pa(C) = pa(P ) + pa(R) + degROR(F )− degZ − 1 (4)

Example 2. We show below that both families of curves involved in
inclusion (3) lie on a double quadric in P3 and compute their triples.

(a) A curve C in the family G10,m is a disjoint union C = D1 ∪ D2 of
double lines of genera −m and m − 98. The support L1 ∪ L2 being contained
in a 3-dimensional family of smooth quadrics, we can choose such a quadric Q
containing neither D1 nor D2. Then C lies on the double quadric X = 2Q and

T (C) = {Z1 ∪ Z2, L1 ∪ L2, L1 ∪ L2}

where Z1 ⊂ L1 has length m + 1 and Z2 ⊂ L2 as length 99 −m ≥ m + 1 by
formula (4). For C general, Zi can be taken to be reduced sets of points.

(b) A curve C in the family G11,0,m−1 is a quasi-primitive 4-line supported
on L of type (0,m−1, 97−m) (see Remark 5 (c)) and has underlying double line
of type 0 and hence genus −1. Such a double line necessarily lies on a smooth
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quadric surface Q [33, Remark 1.5], hence C itself lies on the double quadric
X = 2Q. It takes some work [36, Prop. 3.1], but one finds that

T (C) = {Z, 2L, 2L},

where 2L is the double line on Q and Z consists of 98− 2m reduced points and
m+ 1 double points on 2L, none of which are contained in L .

Remark 7. Looking at the triples in Example 2, we note that triple in
part (b) is a limit of the triples in part (a): The two lines L1 and L2 come
together on Q to form the double line 2L, and the sets of reduced points Z1

and Z2 can be brought together in this limit to form m + 1 double points and
98−2m reduced points. If we could lift this flat family of triples to a flat family
of curves on X = 2Q, we would have proved the inclusion (3).

Thus we consider the map C 7→ T (C) = {Z,R, P}, which yields a natural
transformation of functors

H
t→ D

where H is the set of flat families of curves on X = 2F and D is the set of
triples {Z,R, P}. The functor D is represented by a disjoint union of locally
closed subschemes Dz,r,p, where {z, r, p} are the respective Hilbert polynomials
of the entries in the triple {Z,R, P}. The pre-images under t stratify the Hilbert
scheme H into locally closed subschemes Hz,r,p. The map t has a nice structure
over the locus of the triples in D given by a vanishing [35, Thm. 3.2]:

Theorem 12. (Nollet and Schlesinger, 2003) Let V ⊂ Dz,r,p be the open
subscheme corresponding to triples {Z,R, P} satisfying H1(OR(Z+P−F )) = 0.
Then the map t−1(V ) → V is the composition of an open immersion and an
affine bundle projection. In particular, if Y ⊂ V is irreducible, then t−1(Y ) is
also irreducible (hence connected).

Example 3. Here are two applications of Theorem 12.

(a) In view of Remark 7, Theorem 12 will prove the inclusion (3) if the
vanishing H1(OR(Z+P −Q)) = 0 holds for both the triples in Example 2. This
is easy for the triples in (a): writing R = L1 ∪ L2 the vanishing boils down to
H1(OLi

(Zi + 1 − 2)) = 0 for i = 1, 2, which is immediate because degZi ≥ 0.
The vanishing for family (b) uses the Cohen-Macaulay filtration (Remark 5 (c))
for the 4-line C [36, Prop. 3.1].

(b) Some of the deformations used in showing the connectedness of H3,g

follow from Theorem 12, for example [33, Prop. 3.3].

We close this section with some open questions involving the fibres of the
map t : H → D. Given a triple T = {Z,R, P} ∈ D on F , the fibre t−1(T )
is the set of locally Cohen-Macaulay curves C ⊂ X with T (C) = T (there
may be none). There is a bijection between such curves C and surjections
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φ : IP ⊗OR → OR(Z − F ) such that φ ◦ τ = σ, where

τ = (O(−F ) ↪→ IP )⊗OR σ = (OR(−Z) ↪→ OR)⊗OR(Z − F )

are the natural maps [35, Prop. 2.2], hence these maps can be identified with
an open subset

U ⊂ homR(OR(−P ),OR(Z − F )) ∼= H0(OR(Z + P − F )).

Problem 3. Under what conditions is the open set U non-empty? When
does a given triple T = {Z,R, P} arise from a curve C ⊂ X?

Remark 8. Obviously a solution to Problem 3 will have applications to
classifying non-reduced curves of low degree. Here are some partial results.

(a) For triple T = {Z,R, P}, the open subset U is non-empty if any of the
following conditions hold [35, Remark 2.7 and Prop. 2.5]:

(1) H1(OR(Z +P −F )) = 0 and OR(Z +P −F ) is generated by global
sections.

(2) H1(OR(Z + P − F −H)) = 0 for a very ample divisor H on R.

(3) H1(OR(P − F )) = 0.

(b) For the double plane X = 2H ⊂ P3, the subset U is non-empty for
any triple, because condition (3) above holds. Chiarli, Greco and Nagel
have described the curves with fixed triple using a matrix of homogeneous
polynomials over H, giving a certain “normal form” to such curves C [8].

(c) The double quadric X = 2Q ⊂ P3 is more interesting [35, Ex.2.8]. Let
T = {Z,R, P} be a triple with Z Gorenstein of dimension zero.

(1) If R = P is a smooth rational curve, then T arises from a curve with
one exception: R = P is a conic and Z is a reduced point.

(2) If P is ample on Q and R 6= P , then T arises from a curve.

(3) If R ⊂ P are disjoint unions of rulings on Q, then T arises from a
curve if and only if Z ∩ L 6= ∅ for each ruling L ⊂ R.

Problem 4. Answer the question implicit in part (c) above: Which
triples on a smooth quadric in P3 come from a curve on the double quadric?
Describe the Hilbert schemes Hd,g(2Q).

Problem 5. (Hartshorne) Which curves on a double surface 2F ⊂ P3

are flat limits of curves on smooth surfaces? For example, the thick triple line
L(2) on the double plane 2H is a flat limit of twisted cubic curves lying on smooth
quadric surfaces. What is special about the curve L(2) or its triple {∅, L, 2L}
that allow it to be such a limit?
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6. Subcanonical curves

In view of Paolo Valabrega’s research interests [5, 6, 13, 41], we thought it would
be interesting to determine which families of curves in H4,−99 are subcanonical.
A local complete intersection curve C is α-subcanonical if ωC ∼= OC(α). The
following restricts our attention to just a few families in H4,−99.

Proposition 1. Suppose that C ∈ H4,−99 is subcanonical. Then

(1) ωC ∼= OC(−50).

(2) C has no smooth rational irreducible components.

(3) C is one of the following:

(a) A double conic.

(b) A union of two double lines.

(c) A quasi-primitive 4-line.

Proof. An α-subcanonical of degree d and genus g satisfies dα = 2g − 2 in
general, hence α = −50 in our case.

Suppose that C has a smooth rational component R. Then degR 6= 4
because then C = R has genus 0 6= −99. Also degR 6= 3 because then C = R∪L
(L a line) forces pa(C) = deg(R ∩ L)− 1 ≥ −1 is not equal to −99. Thus R is
a line or a conic. We write C = S ∪R and restrict the exact sequence

0→ ωS ⊕ ωR → ωC → ωS∩R → 0

to R. Using ωC = OC(−50) we obtain

ωS |R ⊕ ωR
φ→ OR(−50)→ ωS∩R → 0.

Now the sheaf ωS |R is torsion and ωR is either isomorphic ωR = OR(−2) (if R
is a line) or OR(−1) (if R is a conic), hence φ is the zero map. This proves (2)
by contradiction, since the cokernel of φ is finitely supported.

Let B = SuppC. Then degB < 4 (since g < −3) and degB 6= 3 (since
then C consists of a double line and a reduced curve of degree two). Thus
degB = 2 or 1 and C is either (a) a double conic, (b) a union of two double
lines or (c) a multiple line by part (2). If C were a thick 4-line supported on L,
then it contains the triple line with ideal I2L, which has degree 3 and genus 0 (a
degenerate twisted cubic curve). According to [36, Lem. 4.1], C has spectrum

{−98, 0, 12},

which is a shorthand way of saying that the function hC(n) = ∆2h0OC(n)
satisfies hC(−98) = 1, hC(0) = 1, hC(1) = 2 and hC(n) = 0 otherwise. Such a
curve C cannot satisfy ωC = OC(−50), for in this case it would not satisfy the
symmetry hC(n) = hC(−50 + 2− n)) [40, Prop. 2.15].
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Proposition 2. There are 18 irreducible components of H4,−99 whose
general member is (−50)-subcanonical, as listed in Table 1.2.

Table 1.2: Irreducible families of subcanonical curves in H4,−99
Label from Table 1.1 Dimension Spectrum

G5

Double conics
211 {−49,−48, 0, 1}

G10,49

Disjoint union of two double
lines of genus −49

206 {−482, 02}

G11,a,48−3a for 0 < a ≤ 16
Quasi-primitive 4-line

205− 3a {−48,−48 + a,−a, 0}

Proof. By Proposition 1 we need only consider (a) double conics, (b) unions
of double lines, and (c) quasi-primitive 4-lines. The double conics are auto-
matically subcanonical, for if D is the support of a double conic C, then the
Cohen-Macaulay filtration is

0→ IC → ID → OD(49)→ 0.

Noting that OD(49) = ωD(50), we see that C arises by the Ferrand construction
[12] and hence is subcanonical.

Next consider a union C = D1 ∪ D2 of double lines. If C is connected,
then the support is planar and C is contained in the double plane. It follows
that C is a limit of double conics by Theorem 12 or [25, Thm. 5.1], so we need
only consider disjoint unions of double lines. Since a double line of genus g is
(g − 1)-subcanonical, a disjoint union of such can only be subcanonical if the
double lines have the same genus, which in this case must be −49.

Now let C be a quasi-primitive 4-lines of type (a, b, c) with 0 < a ≤ 16,
0 ≤ b ≤ 48 − 3a and c = 96 − 6a − b. This means that there are locally
Cohen-Macaulay curves L ⊂ D ⊂ W ⊂ C with quotients IL/ID ∼= OL(a),
ID/IW ∼= OL(2a + b) and IW /IC ∼= OL(3a + c) (see Remark 5 (c)). Piecing
together the exact sequences and using a > 0, the spectrum of C is

{−3a− c,−2a− b,−a, 0}.

To be (−50)-subcanonical, this sequence of integers must be symmetric about
−24 [40, Prop. 2.15], which forces b = 48− 3a and c = 48− 3a. It now suffices
to show that the general 4-line C of type (a, 48− 3a, 48− 3a) is subcanonical.

The exact sequence

0→ ID → IL → OL(a)→ 0 (5)

shows that the underlying double line D ⊂ C arises from the Ferrand construc-
tion and is (−a − 2)-subcanonical, since OL(a) ∼= ωL(a + 2). In fact, D is a
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divisor on a smooth surface S ⊂ P3 of degree a+2 by [33, Rmk. 1.5]. In view of
the isomorphisms IS ∼= OP3(−a−2) and ID,S⊗OD = OS(−D)⊗OD ∼= ωS⊗ω−1D
with ωS ∼= OS(a− 4) and ωD ∼= OD(−a− 2), restricting the exact sequence

0→ IS → ID → ID,S → 0

to D yields
OD(−a− 2)

τ→ N∨D
π→ OD(2a− 2)→ 0. (6)

Since π is a surjection of bundles on D, the kernel is a line bundle on D. Since
any surjection of line bundles is an isomorphism, τ is injective and sequence (6)
is short exact.

Exact sequence (5) shows that h0OD(m) = h1ID(m) = 0 for m < −a,
hence sequence (6) yields the vanishing H1(ND⊗ωD(m)) ⊥ H0N∨D(−m) = 0 for
m > 3a−2. ThereforeND⊗ωD is (3a)-regular and soND⊗ωD(n) is generated by
global sections for n ≥ 3a by the Castelnuovo-Mumford theorem. Since a ≤ 16,
we have in particular that ND ⊗ ωD(50) is generated by global sections and we
obtain a nowhere vanishing section yielding a surjection ID → N∨D → ωD(50)
whose kernel IC is the ideal sheaf for a (−50)-subcanonical curve C by Ferrand’s
construction. Clearly C is supported on L and the sequence

0→ ωD(50)→ OC → OD → 0

shows that the spectrum of C is {−48,−48 + a,−a, 0}, so C is quasi-primitive
of type (a, 48 − 3a, 48 − 3a). For curves with fixed spectrum, the property of
being subcanonical is open and we conclude.

Remark 9. Chiantini and Valabrega have given equations of such curves
[5, Examples 3.1 and 3.2]. For m,n, u > 0 and p ≥ max{m,n}, they observe
that the curve V with homogeneous ideal

IV = ((xn, ym)u, zp−nxn − wp−mym = ϕ)

is ((1 − u)p + (m + n)u − 4)-subcanonical. Setting 4 = deg V = mnu, we find
just a few possibilities. When u = 1 we obtain plane curves (m = 4, n = 1) and
complete intersections of two quadrics (m = n = 2). More interesting are these:

(a) m = 2, n = 1 and u = 2. To obtain a (−50)-subcanonical curve we
take p = degϕ = 52. This is a quasi-primitive 4-line of type (−1, 50, 52).
It does not appear in Table 1.1 because such 4-lines are limits of double
conics. This one is a Ferrand doubling of the plane curve with ideal (x, y2).

(b) m = n = 1 and u = 4. To obtain a (−50)-subcanonical curve we take
p = degϕ = 54. This curve is a quasi-primitive 4-line of type (16, 0, 0).

Remark 10. Here we make a list of the families of subcanonical curves
of degree four. There are none when g is even. For g = 3 there are plane curves
and for g = 1 there are complete intersections of two quadrics. For odd g < 0
we have:
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1. Double conics.

2. Disjoint unions of two lines of genus g+1
2

3. Quasi-primitive 4-lines of type (a, −g+3−6a
2 , −g+3−6a

2 ) for 0 < a ≤ −g−3
6

(this last family is empty for g > −9, as no such a exist).
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bud), Séminaire de Mathématiques Supérieures 85, Presses de l’Université
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