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Abstract. The Noether-Lefschetz theorem was stated in the 1880s, proved

in the 1920s, and flourished in the 1980s, in large part due to the influence of
Phillip Griffiths and his students. In this survey we examine the refinements

to the original theorem and work done on the Noether-Lefschetz components.

Introduction

Let X be a smooth complex projective variety. The Picard group PicX of line
bundles on X modulo linear equivalence is a classical invariant. While a curve X
is essentially determined by PicX (or rather its jacobian1), this is far from true in
higher dimensions. When X is a smooth quadric or cubic surface in P3, the Picard
group is understood in terms of the geometry of lines lying on these surfaces, but
in the absence of special geometry PicX is difficult to compute. On the other
hand, there are good results comparing the Picard group of a variety X to that
of the general member Y of a complete linear system associated to an ample line
bundle. Specifically, one can ask whether the restriction map PicX → PicY is an
isomorphism; this is typically false if dimX = 2, true if dimX ≥ 4, and difficult if
dimX = 3. The precise result for X = P3

C is that for d ≥ 4, the restriction map
PicX → PicS is an isomorphism for all surfaces S outside of a countable union
of proper subvarieties of the space of degree-d surfaces. This is Noether’s theorem,
a high point in algebraic geometry and Hodge theory. Here we aim to survey this
important theorem and surrounding developments.

We begin with the history before 1980, starting with Noether’s original 1882
statement and his likely motivations in Section 1.1. Lefschetz proved the theorem
in the 1920s using topological methods – to quote Lefschetz, “It was my lot to plant
the harpoon of algebraic topology into the body of the whale of algebraic geometry.”
We sketch his proof in Section 1.2, describing Lefschetz pencils, vanishing cycles,
the monodromy action and the Picard-Lefschetz formula. The theorem lay dormant
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until the late 1950s, when algebraic geometry got a boost from Grothendieck’s uni-
fying theory of schemes and mathematicians looked at old problems in a new light.
By the late 1960s the theorem had been revisited: Moishezon used Lefschetz’ ideas
to extend Noether’s theorem to general smooth complex projective varieties while
Grothendieck, Deligne and Katz used l-adic cohomology to prove a generalization
for algebraic cohomology classes on complete intersections in projective spaces valid
in characteristic p > 0. These matters are discussed in Sections 1.3 and 1.4. In
Section 1.5 we discuss the Grothendieck-Lefschetz theorem for higher dimensions,
which arises from completely different considerations.

Section 2 is devoted to refinements of Noether’s theorem since 1980. The sub-
ject was infused with new ideas coming from infinitesimal variations of Hodge struc-
tures, as established in the 1983 foundational paper of Griffiths and his students
Carlson, Green and Harris, setting off a flurry of results from many contributors.
In Section 2.1 we review Hodge structures and their infinitesimal deformations,
especially for families of hypersurfaces in Pn. With this language we state the in-
finitesimal Noether theorem in Section 2.2, giving a brief sketch of the proof. In
Section 2.3 we discuss Green’s theory of Koszul cohomology and its role in the
explicit Noether theorem, which improves the classical theorem by giving a sharp
lower bound on the dimensions of the Noether-Lefschetz components, that is, those
components of the family of surfaces for which Noether’s theorem fails. The year
1985 saw two more important developments: Griffiths and Harris offered a new
proof of the classic theorem by a degeneration argument which almost entirely
avoids Hodge theory; Ein extended Noether’s theorem to general dependency loci
of vector bundles of any rank on an arbitrary projective n-fold. These are covered in
Sections 2.4 and 2.5 respectively. In 1995 Joshi proved a variant for smooth three-
folds using an infinitesimal approach from unpublished notes of Mohan Kumar and
Srinivas, but more importantly he observed that the result holds for general singu-
lar surfaces, this is the topic of Section 2.6. Section 2.7 describes the more recent
work of Ravindra and Srinivas which give analogs of Noether’s theorem and the
Grothendieck-Lefschetz theorem for class groups of hyperplane sections of normal
ambient varieties. The last section discusses our variant of Noether’s theorem with
base locus.

In Section 3 we discuss the irreducible components V of the Noether-Lefschetz
locus, the countably infinite union of proper families of degree-d surfaces in |OP3(d)|
for which Noether’s conclusion fails. The codimension c(V ) = codim(V, |OP3(d)|)
satisfies d − 3 ≤ c(V ) ≤ pg =

(
d−1
3

)
: the components V satisfying c(V ) = pg are

general and the rest are special. In Section 3.1 we present the density theorem
of Ciliberto, Harris and Miranda stating that the general Noether-Lefschetz com-
ponents are Zariski dense in |OP3(d)| and sketch Green’s proof of density in the
Euclidean topology. Section 3.2 is devoted to the work of Green and Voisin on the
components of small codimension, along with Otwinowska’s more recent asymp-
totic results on these components. We discuss the construction of Ciliberto and
Lopez which gives a range in which describes the distribution of codimensions of
the components in Section 3.3. We close with Voisin’s counterexample to Harris’
conjecture that there should be finitely many special components.

The last section discusses applications of Noether’s theorem to questions of
Srinivas about class groups of complete local rings.
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We assume that the reader is familiar with algebraic geometry [38, 46] and
Hodge theory [89, 90]. We have tried to write in chronological order of ideas,
noting later refinements before going on, and sometimes giving simpler versions of
theorems for easier reading. To make comparisons of results easier, we maintain the
notation of the first paragraph: X is the ambient space and Y is a smooth member
of the linear system corresponding to an ample line bundle L. Most of the results
are given at least a sketch of the proof or the new ideas used.

We dedicate this survey with pleasure to Phillip Griffiths for his influential
work on the subject. Voisin’s books on Hodge theory [89, 90] have been very
helpful. The second author thanks Phillip Griffiths for his lectures at the 2012
CBMS conference on Hodge theory and representation theory of June 18-23.

1. The classical theorem

In this section we examine the work related to Noether’s theorem before 1980.
After explaining Noether’s motivations [65], we sketch the topological methods
used by Lefschetz [60] to prove the theorem, including Lefschetz pencils, vanishing
cycles, monodromy action and the Picard-Lefschetz formula. With the same ideas,
Moishezon extended the statement to algebraic homology classes in higher dimen-
sions and characterized the smooth complex threefolds for which Noether’s conclu-
sion holds and [64]. Using l-adic cohomology groups, Grothendieck, Deligne and
Katz interpreted these constructions to obtain a statement meaningful in arbitrary
characteristic p ≥ 0 [43, 15]. We close with the higher dimensional dimensional
analog known as the Grothendieck-Lefschetz theorem [42, 44].

1.1. Noether’s idea. In his 1882 treatise on space curves [65], Max Noether
claimed that the only curves on a general surface Y ⊂ P3

C of degree d > 3 are
complete intersections of Y with another surface. Looking more closely, it wasn’t
even a claim, but a subordinate clause with no hint of a proof [47, pp. 136-137]. To
explain his idea in modern language, consider the projective space |OP3(d)| of all
surfaces of fixed degree d and the Hilbert flag scheme F (n, g, d) parametrizing flags
C ⊂ Y in which C is a curve of degree n and genus g and Y is a surface of degree d.
The flag scheme F (n, g, d), is a projective algebraic set, typically reducible, and the
second projection ρ : F (n, g, d)→ |OP3(d)| is proper, hence the image of the closed
subset W ⊂ F (n, g, d) consisting of flags C ⊂ Y with C not a complete intersection
of Y with another surface is a finite union of subvarieties. Taking the union over all
pairs (n, g) gives a countable union. Noether claims that each of these subvarieties
is proper, and hence their union cannot fill out all of |OP3(d)|. Examples 1.1 and
1.2 illustrate this fact: it is likely that Noether computed many such examples to
arrive at his conclusion. A rigorous proof along these lines would require such a
calculation for all triples (n, g, s) and analysis of the second projection map ρ. This
analysis becomes difficult as n grows.

Example 1.1. Let V ⊂ |OP3(d)| be the family of smooth surfaces which contain
a line. For a fixed line L ⊂ P3, the family VL of surfaces containing L is given by
the linear subspace H0(IL(d)) ⊂ H0(P3,OP3(d)). Tensoring the exact sequence

0→ IL → OP3 → OL → 0

with OP3(d) and considering global sections, we see that VL has codimension equal
to dimCH

0(L,OL(d)) = d+1 because H1(IL(d)) = 0. Since lines are parametrized
by the 4-dimensional Grassmann variety G(1, 3) and the general surface in V does
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not contain two lines, V has codimension c(V ) = d+ 1− 4 = d− 3 in |OP3(d)| and
hence is proper for d ≥ 4. For d ≤ 3, it is well known that the general surface does
contain a line, so V is not proper.

Example 1.2. For a more sophisticated example [14], consider curves C cut
out by maximal minors of a general (d − 1) × (d − 2) matrix M of linear forms.
Such a curve is arithmetically Cohen-Macaulay and its ideal sheaf IC has a linear
resolution

(1.1) 0→ O(1− d)d−2 → O(2− d)d−1 → IC → 0.

It follows that H1(C,NC) = 0 [47, Exercise 12.2] and therefore C is a smooth point

on its Hilbert scheme component W of dimension 4 degC = 4
(
d−1
2

)
. From sequence

(1.1) we read off dimH0(IC(d)) = 6d−2, so if V ⊂ |OP3(d)| is the family of surfaces
containing a curve from W , then dimW = dimV + dimH0(IC(d))− 1 = 2d2 + 1.

Subtracting from dim |OP3(d)| =
(
d+3
3

)
we find that the family V has codimension(

d−1
3

)
in |OP3(d)|.

In the 1920s Solomon Lefschetz proved the celebrated Noether-Lefschetz theo-
rem [57], which in the literature is more often called simply Noether’s theorem:

Theorem 1.3. (Noether’s theorem) For d > 3, every curve on the very
general surface Y ∈ |OP3(d)| is the complete intersection of Y with another surface:
PicY = 〈OY (1)〉.

The term very general refers to a countable intersection of Zariski open sets,
or the complement of a countable union of proper Zariski closed sets. Letting
Ud ⊂ |OP3(d)| denote the open set corresponding to smooth surfaces, the countable
union of Theorem 1.3 is the Noether-Lefschetz locus

NL(d) = {Y ∈ Ud : PicY 6= 〈OY (1)〉}.

Remark 1.4. In view of Theorem 1.3, the general quartic surface Y ⊂ P3 has
Picard group PicY = 〈OY (1)〉, so in the 1960s Mumford challenged mathematicians
to produce an actual equation of one. This challenge was finally met by van Luijk
in 2007. One such surface [83, Remark 3.7] has equation

w(x3 + y3 + x2z + xw2) = 3x2y2 − 4x2yz + x2z2 + xy2z + xyz2 − y2z2.

It is interesting to note that this quartic contains the line z = w = 0 if we specialize
modulo p = 3, but contains no line in characteristic zero.

1.2. The proof of Lefschetz. Lefschetz understood that the analogous prob-
lem in higher dimensions is much easier. He proved this by observing that the expo-
nential sequence 0 → Z → OY → O∗Y → 0 associated to any smooth hypersurface
Y ⊂ Pn gives rise to the exact cohomology diagram

(1.2)
H1(Pn,OPn) → H1(Pn,O∗Pn) → H2(Pn,Z) → H2(Pn,OPn)

↓ ↓ α ↓ β ↓
H1(Y,OY ) → H1(Y,O∗Y ) → H2(Y,Z) → H2(Y,OY ).

The cohomology groups in the four corners are zero for n > 3 and α is identified
with the restriction map PicPn → PicY . The Lefschetz hyperplane theorem says
that the maps Hk(Pn,Z)→ Hk(Y,Z) are isomorphisms for k < n− 1 and injective
for k = n− 1. Thus β is an isomorphism for n > 3 and therefore α as well.
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For surfaces in P3 things are more complicated: it is easy to construct surfaces
for which the map β in diagram (1.2) is not an isomorphism, such as Examples
1.1 and 1.2. Lefschetz’ idea is that if PicY 6= 〈OY (1)〉, then there is a class
λ ∈ H2(Y,Z) ∩ H1,1(Y,C) representing a curve C ⊂ Y which is not a complete
intersection of Y with another surface. As Y varies, the class λ ∈ H2(Y,Z) is
locally constant because H2(Y,Z) is discrete, but with deformation the class λ
tends to move from H1,1(Y,C) to H0,2(Y,C) and therefore becomes non-algebraic.
We sketch his proof below.

1.2.1. A fixed surface. Since a fixed smooth surface Y ⊂ P3 of degree d is
simply connected, the cohomology group H2(Y,Z) is torsion free and therefore
injects into H2(Y,C) [17, Cor. 2.4 and Lemma 3.1]. Thus Lefschetz viewed PicY
as the intersection H1,1(Y,C)∩H2(Y,Z) ⊂ H2(Y,C), as follows from the Lefschetz
(1, 1) theorem [89, Theorem 7.2]. The Poincaré duality intersection pairing 〈, 〉 on
H2(Y,Z) gives the decomposition

(1.3) H2(Y,Z) = 〈c1(OY (1))〉︸ ︷︷ ︸
H2
f (Y,Z)

⊕ 〈c1(OY (1))〉⊥︸ ︷︷ ︸
H2
v(Y,Z)

of H2(Y,Z) into the fixed classes H2
f (Y,Z) := 〈c1(OY (1))〉 ⊂ H2(Y,Z) coming from

P3 and the variable orthogonal complement H2
v (Y,Z) = c1(OY (1))⊥.

1.2.2. Lefschetz pencils. The choice of a line L ∼= P1 ⊂ |OP3(d)| gives a family of
surfaces {Yt}t∈P1 . For general L, the base locus B = ∩t∈P1Yt is smooth and finitely
many Yt are singular, having a single rational double point of type A1: such a family
is called a Lefschetz pencil. Letting U ⊂ P1 correspond to the smooth surfaces, with
corresponding family φ : Y → U , the fibres Yt are diffeomorphic for t ∈ U and we
obtain a local system R2φ∗Z of free abelian groups on U with stalks H2(Yt,Z),
which decomposes orthogonally into two local subsystems with stalks H2

f (Yt,Z)

and H2
v (Yt,Z) as in (1.3) above. For fixed base point 0 ∈ U , the fundamental group

π1(U, 0) acts on H2(Y0,Z), fixing the subsystem H2
f (Y0,Z) = 〈O(1)〉.

1.2.3. Vanishing spheres and irreducibility of monodromy action. To under-
stand the action of π1(U, 0) on H2

v (Y0,Z), Lefschetz constructed geometric genera-
tors for H2

v (Y0,Z). Starting with a small disk ∆i about each point ti ∈ P1 − U , he
used the local structure of the double point in Yti to construct a 2-sphere S2

t ⊂ Yt
for t ∈ ∆i − {ti}. Using a path from t to 0, he transported the class of S2

t to
Y0, obtaining a vanishing sphere δi ∈ H2(Y0,Z). For a loop γi ∈ π1(U, 0) going
around ti once (and no other tj), the action T (γi) of γi on H2(Y0,Z) is given by
the Picard-Lefschetz formula

(1.4) T (γi)(h) = h± 〈h, δi〉δi,

the sign depending on the orientation of γi.
Since T fixes O(1), Formula (1.4) implies the orthogonality 〈c1(O(1)), δi〉 = 0,

hence δi ∈ H2
v (Y0,Z): in fact, the δi generate H2

v (Y0,Z) for any choice of Lef-
schetz pencil ([90, Lemma 2.26]. The orthogonality also gives 〈δi, δi〉 < 0 by the
Hodge index theorem, so 〈, 〉 is negative definite on H2

v (Y0,Z). Moreover, the δi are
in the same π1(U, 0)-orbit [90, Corollary 3.24], hence π1(U, 0) acts irreducibly on
H2(Y0,Q) = H2(Y0,Z) ⊗ Q. Indeed, if F ⊂ H2(Y0,Q) is a π1(U, 0)-invariant sub-
space with 0 6= a ∈ F , then 〈a, δi〉 6= 0 for some i, so T (γi)(a)− a = ±〈h, δi〉δi ∈ F ,
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so δi ∈ F by (1.4) (this is why we tensored with Q), whence all δi ∈ F so that
F = H2

v (Y0,Q).
1.2.4. Properness of Noether-Lefschetz components. Let V ⊂ NL(d) be a com-

ponent of the Noether-Lefschetz locus, meaning that V is the projection ρ(W )
with W a family of flags C ⊂ Y with C not a complete intersection on Y . If
V is not proper, then L ⊂ V for any Lefschetz pencil L and ρ−1(L) ⊂ W gives
a family of such flags. We can choose a 1-dimensional family W ′ ⊂ W which
dominates L under ρ, though it may be multi-valued so that W ′ → L is a de-
gree r ≥ 1 covering of curves. The classes λ1, . . . λr ∈ H2(Yt,Z) corresponding to
curves in the flag given by ρ−1(t)∩W ′ along with O(1) generate a local subsystem
S ⊂ H2(Yt,Q). Then G = F ∩ H2

v (Yt,Q) forms a local subsystem of H2
v (Yt,Q),

which must be 0 or all of H2
v (Yt,Q) by irreducibility. If G = H2

v (Yt,Q), then since
G is generated by algebraic curve classes of Hodge type (1, 1) we must conclude
that H2(Y0,C) = H2

f (Y0,C) ⊕ H2
v (Y0,C) ⊂ H1,1(Y0), but this is impossible for

d ≥ 4 because H2,0(Y0) 6= 0 due to adjunction. Thus G = 0, meaning that the
curve classes λi were (generically) in 〈OYt(1)〉 after all.

Remark 1.5. Similarly, Lefschetz proved [58] that for a smooth 3-dimensional
complete intersection X ⊂ PNC and very general hyperplane section Y ∈ |OX(1)|
which is not rational, PicX → PicY is an isomorphism.

The condition d ≥ 4 appears only at the end of the Lefschetz proof to ensure
that H2

v (Y,C) ∩H2,0(Y ) 6= 0. For an arbitrary smooth threefold X, Voisin defines
H2

van(Y,C) as the kernel of the map j∗ : H2(Y,C) → H4(X,C)), proving that it
is generated by the classes of vanishing spheres for any Lefschetz pencil [90, 2.26].
With this notation she proves [90, Theorem 3.33]:

Theorem 1.6. Let L be a very ample line bundle on a smooth complex projec-
tive threefold X such that H2,0(Y ) ∩H2

v (Y,C) 6= (0) for smooth Y ∈ |L|. Then the
Noether-Lefschetz locus

NL(L) = {Y ∈ |L| : PicX → PicY is not an isomorphism}
is a countable union of proper subvarieties.

1.3. Algebraic homology classes. After the 1924 treatise of Lefschetz [60]
things were quiet until the 1950s, when algebraic geometry was experiencing a
revival from Grothendieck’s theory of schemes. In 1957 Andreotti and Frankel
reproved the Lefschetz theorem on hyperplane sections for a modern audience [1].
Wallace updated Lefschetz’ work in 1960 [84]. In 1967 Moishezon adapted the
proof of Lefschetz to smooth complex projective varieties, obtaining a statement
about algebraic homology classes [64, Theorem 5.4]:

Theorem 1.7. Let X ⊂ PNC be a smooth n-fold and let Y ⊂ X be a very general
hyperplane section. Then for 2k 6= n−1 the algebraic homology classes in H2k(Y,Q)
are exactly those cut out by the algebraic classes in H2k+2(X,Q); the same holds
for 2k = n− 1 if hn−1,0(Y ) > hn−1,0(X).

Remark 1.8. By duality, Theorem 1.7 says that Hm,m(Y,Q) ⊂ H2m(Y,Q)
is the image of Hm,m(X,Q) under the restriction map if dimX = 2m + 1 and
Y ∈ |OX(1)| is very general. Of course this need not happen for all Y ∈ |OX(1)|;
for example, if Y ⊂ X = P2m+1 is a hypersurface of degree d > 2m containing
a linear subspace M of dimension m, then the class of M is not in the image of
Hm,m(X,Q) by reason of degree. (Cf. [68, p.308].)
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Moishezon makes a more detailed analysis for threefolds [64, Theorem 7.5]:

Theorem 1.9. Let X ⊂ PNC be a smooth threefold and let Y ⊂ X be a very
general hyperplane section. Then the restriction PicX → PicY is an isomorphism
if and only if

(a) There is an equality of Betti numbers b2(Y ) = b2(X) or
(b) h2,0(X) < h2,0(Y ).

This remarkable theorem characterizes the threefolds X and the very ample line
bundles L = OX(1) for which the conclusion of the Noether’s theorem holds. When
X = P3, condition (a) picks up the “missing” case where the Noether’s conclusion
holds, namely when L = O(1) and Y ⊂ P3 is a plane.

Remark 1.10. Conditions (a) and (b) translate to algebro-geometric language
as follows. The inclusion Y ↪→ X induces the restriction H2(X,C) → H2(Y,C),
which decomposes via the Hodge isomorphism into the three maps

(1.5)
H2(X,OX)→ H2(Y,OY )
H1(X,ΩX)→ H1(Y,ΩY )
H0(X,Ω2

X)→ H0(Y,Ω2
Y )

Each is injective by Kodaira vanishing. For example, the third map can be writ-
ten as the composition H0(X,Ω2

X) → H0(Y,Ω2
X |Y ) → H0(Y,Ω2

Y ) where the ker-
nel of the first map is H0(X,Ω2

X(−Y )) = 0 and the kernel of the second map is
H0(Y,ΩY (−Y )) = 0. Consequently b2(X) ≤ b2(Y ) with equality exactly when all
three are isomorphisms. Conditions (a) and (b) of Theorem 1.9 become

(a′) the three maps in (1.5) are isomorphisms or
(b′) the first map in (1.5) is not surjective.

In particular, Moishezon notes that condition (b′) holds for large tensor powers Lk

due to the exact cohomology fragment

H2(X,OX)→ H2(Y,OY )→ H3(X,L−k)→ H3(X,OX)

because h3(X,L−k) = h0(X,KX ⊗ Lk)→∞ as k →∞.

Remark 1.11. Restricting decomposition (1.3) for H2(Y,Z) to H2(Y,OY ), we
can interpret H2

v (Y,C) ∩ H2,0(Y ) as the cokernel of the first map in (1.5), so the
hypothesis of Theorem 1.6 is equivalent to condition (b) of Theorem 1.9.

1.4. Interpretation in finite characteristic. The 1966-69 Seminaire de ge-
ometrie algebrique du Bois-Marie (SGA 7) of Deligne, Grothendieck and Katz was
devoted to the study of monodromy group in characteristic p > 0. In this setting
the usual definitions of singular homology and cohomology don’t make sense, but
Grothendieck devised analogs by using l-adic cohomology and category theory [43].
The seminar of Deligne and Katz extended Lefschetz pencils, vanishing cycles and
the Picard-Lefschetz formula to this setting [15, Exposés XIII, XV and XVIII].
With the path prepared, they obtained the following generalization of Noether’s
theorem [15, Exposé XIX, Theorem 1.3]:

Theorem 1.12. Let k be a field of arbitrary characteristic and let V ⊂ P2n+d
k

be a 2n-dimensional generic complete intersection of hypersurfaces having degrees
a = (a1, a2, . . . , ad). Further assume that either

(a) Chark 6= 2 and (2n, a) is not equal to (2n, 2), (2n, 2, 2) or (2, 3) or
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(b) The Hodge number h2n,0(V ) 6= 0, i.e.,
∑

(ai − 1) > 2n.

Then every algebraic cohomology class in H2n(V,Ql(n)) is a rational multiple of
the class ηn, where η = OV (1).

Remark 1.13. The word generic takes on a different meaning here, meaning
that over a field extension of the ground field k it is projectively isomorphic to a
complete intersection defined by equations in which the coefficients are algebraically
independent over k.

Remark 1.14. Most of the proof of Deligne and Katz works for an arbitrary
smooth projective variety V , but there is one sticking point. It is not known
whether the analog of the hard Lefschetz theorem holds in characteristic p > 0.
They conjecture this for all smooth V and give several known cases which include
complete intersections [15, 5.2.2.1]. This explains the restriction in the theorem.
The next corollary specializes to surfaces (compare with Remark 1.5).

Corollary 1.15. Let S ⊂ Pn be a generic complete intersection surface. Then
S is smooth and PicS = 〈OS(1)〉 with the following exceptions:

(1) Quadric surfaces in P3.
(2) Complete intersections of two quadrics in P4.
(3) Cubic surfaces in P3.

Theorem 1.12 says that algebraic cohomology classes of S are rational multiples
of O(1), but in fact they are integral multiples by [15, Theorem 1.8, Exposé XI].

1.5. Higher Dimensions. Grothendieck used a different approach for general
ambient varieties in the late 1960s. His result follows [42, 44]:

Theorem 1.16. (Grothendieck-Lefschetz Theorem) Let X be a smooth
projective variety of dimension n ≥ 4. Then for any effective ample divisor Y ⊂ X,
the restriction map PicX → PicY is an isomorphism.

Notice that Y need not even be reduced here! For example, every closed sub-
scheme Y ⊂ P4 defined by a homogeneous polynomial has Picard group PicY
generated by OY (1). It is stated for Y smooth [44, IV, Corollary 3.3], but Lazars-
feld notes that the argument goes through for arbitrary Y [56, Remark 3.1.26].
This proof contains a beautiful idea due to Grothendieck [42, Exposé X]. He con-

siders an open neighborhood U of Y in the formal completion X̂ of X along Y ,
showing that the sequence of induced maps

PicX → PicU → Pic X̂ → PicY

are all isomorphisms. The most difficult part is the isomorphism Pic X̂ ∼= PicU ,
for which Grothendieck defines Lefschetz conditions that are satisfied the pair
(X,Y ). The last isomorphism is obtained by considering the infinitesimal neigh-
borhoods Yn ⊂ X defined by ideals InY . The Kodaira vanishing theorem im-

plies that Hi(Y, InY /I
n+1
Y ) = 0 for i = 1, 2 and therefore the exact sequences

0 → InY /I
n+1
Y → O∗Yn → O

∗
Yn+1

→ 0 give isomorphisms PicYn ∼= PicYn+1 for

n > 0 and hence Pic X̂ ∼= lim
←−

PicYn ∼= PicY .
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2. New ideas: the infinitesimal approach

By the mid 1970s it seemed as if the ideas of Lefschetz had been pushed as
far as they could go. Indeed, there was relative silence for almost a decade until
Carlson, Green, Griffiths and Harris introduced infinitesimal methods to the prob-
lem [9]. This led to the infinitesimal Noether theorem, which sparked new interest
in the subject and instigated developments over the next decade. There soon fol-
lowed Green’s explicit Noether-Lefschetz theorem [25, 26] (see also [85]) and Ein’s
extension to dependency loci of sections of vector bundles [19]. Griffiths and Har-
ris developed an algebraic degeneration argument in 1985 [40]. Later, two papers
based on notes of Mohan Kumar and Srinivas [54] led to a new variant for smooth
threefolds of Joshi in 1995 [50] and a generalization to normal ambient spaces of
Ravindra and Srinivas in 2009 [74]. Our extension of the theorem for hypersurfaces
in Pn with base locus came out in 2011 [4].

2.1. Variations of Hodge structures and projective hypersurfaces. In
1983 Carlson, Green, Griffiths and Harris established the theory of infinitesimal
variations of Hodge structures in their foundational paper [9]. It remains an active
area of research today [8, 30, 31, 12, 75]. In this section we review Hodge struc-
tures, their deformations, and give Griffiths’ interpretation of the differential to the
period map for the family of smooth projective hypersurfaces of fixed degree.

2.1.1. Hodge structures. Hodge theory assigns to any compact Kähler mani-
fold Y a decomposition Hk(Y,C) =

⊕
p+q=kH

p,q(Y ), where each complex sub-

space Hp,q(Y ) ⊂ Hk(Y,C) consists of classes represented by closed (p, q)-forms and
Hp,q(Y ) is isomorphic to Hq,p(Y ) via complex conjugation [89, §6.1], while the
universal coefficients theorem from algebraic topology provides and isomorphism
Hk(Y,C) ∼= Hk(Y,Z) ⊗ C. Abstracting this data leads to a Hodge structure of
weight k, a pair (HZ, H

p,q) consisting of a free abelian group HZ (Hk(Y,Z)/(torsion)
in the above setting) and a decomposition HZ ⊗ C = H = ⊕p+q=kHp,q satisfying

Hp,q = Hq,p. The Hodge filtration

F p =
⊕
r≥p

Hr,k−r = Hp,k−p ⊕Hp+1,k−p−1 ⊕ · · · ⊕Hk,0 ⊂ H

satisfies

(1) (0) = F k+1 ⊂ F k ⊂ · · · ⊂ F 0 = H.

(2) F p ⊕ F k−p+1 = H.

These two properties suffice to recover Hp,q = F p ∩ F q, so one can define a Hodge
structure by the data {HZ, H

p,q} or {HZ, F
p}.

2.1.2. Polarized Hodge structures. Now suppose our Kähler manifold Y with
the natural Hodge structure (HZ, H

p,q) carries an ample line bundle L polarizing
Y by the integral class ω = c1(L). This gives rise to the bilinear form

Q : HZ ×HZ → Z
via Q(α, β) =

∫
X
α ∧ β ∧ ωn−k with n = dimY . The form Q satisfies

(1) Q(α, β) = (−1)kQ(β, α).
(2) Q(α, β) = 0 for α ∈ Hp,q, β ∈ Hr,s, (p, q) 6= (s, r).
(3) ip−qQ(α, α) > 0 if 0 6= α ∈ Hp,q.

Thus a polarized Hodge structure of weight k is a triple {HZ, H
p,q, Q} in which

{HZ, H
p,q} is a Hodge structure and Q is a bilinear map as above.
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Example 2.1. Another important example of a (polarized) Hodge structure
arising from geometry comes from the Lefschetz decomposition. For Y of dimension
n and ω = c1(L) as above (or any integral Kähler form), the Lefschetz operator
L : Hk(Y,Z) → Hk+2(Y,Z) acts via cup product with ω. The hard Lefschetz
theorem says that the maps Ln−k : Hk(Y,Z) → H2n−k(Y,Z) are isomorphisms.
The kernel of one higher power of L defines the primitive cohomology, that is

Hk
prim(Y,Z) = ker(Ln−k+1 : Hk(Y,Z)→ H2n−k+2(Y,Z)).

The primitive cohomology groups form building blocks for all cohomology groups
in the sense that each α ∈ Hk(Y,Z) can be uniquely written in the form

α =
∑
r≥0

Lrαr with αr ∈ Hk−2r(Y,Z)prim.

This is known as the Lefschetz decomposition. Now setting

HZ = Hk(Y,Z) ∩Hk
prim(Y,Q)

Hp,q = Hp,q(Y,C) ∩Hk
prim(Y,C)

Q(ϕ,ψ) = (−1)
(k(k−1)

2

∫
Y

ϕ ∧ ψ ∧ ωn−2k

gives a polarized Hodge structure of weight k.

2.1.3. Variations of Hodge structure. Hodge structures have been useful in
some classification results [22, 51], but most fixed abstract Hodge structures do not
come from geometry, and it is more productive to study how they vary in a family.
Let f : Y → B be a projective morphism with smooth fibers Yb of dimension n. In
the differentiable category this fibration is trivial over simply connected open sets
U ⊂ B by Ehresmann’s theorem [18], so we can identify Hk(Ys,Z) with Hk(Y0,Z)
for fixed 0 ∈ U . Gluing these together gives the Hodge bundle H = Rkf∗Z⊗Z OB ,
a holomorphic vector bundle on B with a filtration

(0) = Fk+1 ⊂ Fk ⊂ · · · ⊂ F0 = H

by holomorphic subbundles whose fiber over b ∈ B is the corresponding Hodge
filtration. Differentiation on local trivializations forH gives rise to the Gauss-Manin
connection ∇ : H → ΩB ⊗ H which satisfies Griffiths transversality [33, 34, 35],
the condition that ∇(Fp) ⊂ ΩB ⊗ Fp−1. A variation of Hodge structures is the
data {H,F•,∇} on B, or {H,F•, Q,∇} if there is a polarization involved.

2.1.4. Infinitesimal variation of Hodge structures. For a given family Y → B
as above, consider the (holomorphic) tangent space T = TB,0 at 0 ∈ B. Griffiths
transversality induces OB-linear maps

∇0 : Fp/Fp+1 → ΩB ⊗Fp−1/Fp

for each p. The fibre at s = 0 gives maps ∇0 : Hp,q → Hom(T,Hp−1,q+1), which
can be reassembled to obtain the differential of the period map

(2.1) δ : T → ⊕pHom(Hp,q, Hp−1,q+1)

given by δ(v)(ξ) = ∇0(v)(ξ). Alternatively, this map can be obtained by form-
ing the classifying space D for polarized Hodge structures of fixed dimensions
hp,q = dimHp,q, which has the structure of a homogeneous manifold [9, 1.a.4].
The variation of Hodge structures associated to Y → B defines a local period map
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B → D and computing the differential at 0 yields the map δ [9, 1.a.11, 1.a.12 and
1.a.13], which satisfies

(1) δ(ξ1)δ(ξ2) = δ(ξ2)δ(ξ1) for ξ1, ξ2 ∈ T .
(2) Q(δ(ξ)ϕ,ψ) +Q(ϕ, δ(ξ)ψ) = 0 for ξ ∈ T, ϕ ∈ F p, ψ ∈ F k−p+1.

An infinitesimal variation of Hodge structure is the data V = {HZ, H
p,q, Q, T, δ}

satisfying the above properties.

Remark 2.2. When the infinitesimal variation of Hodge structure arises from
a family Y → B as above, Griffiths showed that δ is given by the cup product
δ(v)(ξ) = κ(v) ∪ ξ, where κ : T → H1(Y0, TY0

) is the Kodaira-Spencer map, where
TY denotes the tangent bundle on Y [34, Proposition 1.20].

2.1.5. Hypersurfaces in projective space. Let B ⊂ |OPN (d)| be the open subset
corresponding to smooth hypersurfaces, where N = 2m + 1 is odd. If Y → B is
the universal family with fibers Yb of dimension 2m, one can consider a generalized
Noether-Lefschetz locus

(2.2) NL(d) = {Y ∈ B|H2m(Y,Q) ∩Hm,m(Y ) 6= Q}.

Note that Y0 ∈ NL(d) if and only if there is a class λ ∈ H2m(Y0,Q) ∩ Hm,m(Y0)
which is not a multiple of c1(O(1))n, which is equivalent to the existence of a primi-
tive class 0 6= λ ∈ Hm,m

prim (Y0,Q). If 0 ∈ U is a simply connected open neighborhood,
then λ defines a local section of the Hodge bundle and one can consider the local
Hodge locus Uλ = {b ∈ U : λ ∈ Fm+1

b }. Cattani, Deligne and Kaplan have shown
that Uλ are algebraic [11] and consequently NL(d) = ∪λUλ is a countable union of
algebraic sets.

The differential to the period map δ at Y ∈ B has an algebraic interpretation
due to Carlson and Griffiths [7, 36]. If Y is given by equation F = 0, the Jacobi
ideal is J = (∂F/∂x0, ∂F/∂x1, . . . , ∂F/∂xn+1) and the Jacobi ring is R = S/J ,
where S is the homogeneous coordinate ring for Pn+1. With this notation, there
are isomorphisms

(2.3) TB,Y ∼= Rd, Hn−q,q
prim

∼= R(q+1)d−n−2 for all q ≥ 0

and the maps TB,Y ⊗ Hn−q,q → Hn−q−1,q+1 arising from the differential δ are
identified with the multiplication maps Rd ⊗ R(q+1)d−n−2 → R(q+2)d−n−2. More-
over, if n = 2m and 0 6= λ ∈ Hm,m

prim (Y,Q) as above, then TUλ,Y ⊂ TB,Y is the left
annihilator of λ.

2.2. The infinitesimal Noether theorem. This result describes the Hodge
classes of the middle cohomology group of a sufficiently ample hypersurface whose
Hodge type is fixed under first order deformations. In accordance with our con-
ventions, let L be an ample line bundle on a smooth complex variety X of dimen-
sion n with smooth member Y ∈ |L|. Let j : Y ↪→ X be the inclusion and let
ω = c1(L) ∈ H2(X,Z) be the first Chern class. We must make some definitions
before we can state the theorem: we first extend the decomposition of the middle
cohomology of Y used by Lefschetz in his original proof (see section 1.2).

2.2.1. Fixed cohomology and variable cohomology. The Poincáre-Lefschetz dual
to the homology sequence for the pair (X,Y ) with complex coefficients gives rise
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to the commutative diagram

Hn(X − Y )
R→ Hn−1(Y )

j∗→ Hn+1(X)
↑ r ↗ ω

Hn−1(X)

in which the restriction r is an injection by the Lefschetz hyperplane theorem and
ω is an isomorphism by the hard Lefschetz theorem. Therefore r ◦ω−1 is a splitting
for j∗ and we obtain a decomposition

(2.4) Hn−1(Y ) = rHn−1(X)︸ ︷︷ ︸
Hn−1
f (Y )

⊕RHn(X − Y )︸ ︷︷ ︸
Hn−1
v (Y )

.

Here Hn−1
f (Y ) = rHn−1(X) is the fixed part of Hn−1(Y ) coming from the

ambient space X and Hn−1
v (Y ) = rHn−1(X) = ker j∗ is the variable part. This co-

incides with Voisin’s vanishing cohomology Hn−1
van (Y ), which is generated by classes

of vanishing spheres for any Lefschetz pencil [90, 2.26]. The decomposition (2.4)
respects Hodge structure and the summands are orthogonal with respect to the
bilinear form Q in the weight n− 1 Hodge structure [90, 2.27].

2.2.2. Infinitesimally fixed cohomology. We describe the classes whose Hodge
type does not change under first order deformation in the family |L|. Let S ⊂ |L|
be the open subset corresponding to smooth hypersurfaces with universal family

Y ⊂ X × S
↓
S.

Then Y is defined by the vanishing of a section s ∈ H0(L). The tangent space
to Y in the Hilbert scheme for X is isomorphic to H0(Y,N), where N is the
normal bundle and the tangent space TY (|L|) to Y in the family |L| is the image
of H0(X,L)→ H0(Y,N) arising from the exact sequence

0→ OX
s→ L→ N → 0.

In this case we are interested in tangent directions corresponding to movement of Y
in the family L, i.e. we don’t want to consider those induced from automorphisms
of Y . To achieve this, consider the diagram

0
↓
TY
↓

0 → TX(−Y ) → TX → TX ⊗OY → 0
σ ↘ ↓

N
↓
0

and define T to be the tangent space TY (|L|) ⊂ H0(Y,N) modulo the image of σ.
If L is sufficiently ample that H0(X, TX) → H0(Y, TX ⊗ OY ) is an isomorphism,
then we may view T ⊂ H1(Y, TY ) as a subset and taking cup product with the
Kodaira-Spencer class defines the infinitesimal variation of Hodge structure as in
Remark 2.2 (see also [89, Ch. 10]). Thus we obtain the infinitesimal variation
of Hodge structures V = {HZ, H

p,q, Q, T, δ} where HZ = Hn−1(Y,Z)/(torsion),
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Hp,q = Hp,q(Y ), T is the tangent space and δ : T → ⊕pHom(Hp,q, Hp−1,q+1) is the
differential to the period map. With this notation, the classes whose Hodge types
do not change infinitesimally under V are precisely

Hp,q
i.f. (Y ) = {Ψ ∈ Hp,q : δ(ξ)Ψ = 0 for all ξ ∈ T}.

Carlson, Green, Griffiths and Harris prove the following result [9, 3.a.16]:

Theorem 2.3. (Infinitesimal Noether Theorem) If X is a smooth n-
dimensional projective variety of and L is a sufficiently ample line bundle on X,
then for any smooth Y ∈ |L| the infinitesimally fixed part of the middle cohomology
groups of Y is precisely the fixed cohomology coming from the ambient space X. In
other words if p+ q = n− 1 = dimY , then

Hp,q
i.f. (Y ) = Hp,q

f (Y ).

The proof follows from two ingredients:
2.2.3. Hodge filtration and order of the pole. Since X −Y is affine, Hk(X −Y )

is isomorphic to the algebraic de Rham cohomology Hk
ADR(X − Y ) associated to

the complex of differentials. The first ingredient is a theorem of Griffiths saying
that under this isomorphism, the Hodge filtration on Hk(X − Y ) is given by the
order of the pole along Y [36] (see also [90, § 6.1.2]). The precise statement is this:

Theorem 2.4. Assume that Hm(ΩpX(qY )) = 0 for p ≥ 0,m > 0 and q > 0.
Then the image of the natural map H0(X,KX(pY )) → Hk(X − Y ) is the Hodge
filtrant F k−p+1Hk(X − Y ) for 1 ≤ p ≤ k.

In the context of Theorem 2.3, the important consequence of Theorem 2.4 is
the exact sequence

(2.5) 0→ Hn−q,q
prim (X)→ H0(KX((q + 1)Y )

dH0(Ωn−1X (qY )) + sH0(ΩnX(qY ))
→ Hn−1−q,q

v (Y )→ 0

where d and s are the natural maps and n = dimX [9, 3.a.8].
2.2.4. Surjectivity of multiplication maps. The second ingredient is a condition

that comes up in several of the variants of Noether’s theorem. It is the fact that if
L is sufficiently ample, then the multiplication maps

(2.6) H0(X,L)⊗H0(X,KX ⊗ Lq)→ H0(X,KX ⊗ Lq+1)

are surjective for all q ≥ 0. Using the surjection H0(X,L) → T from section 2.2.2
and the surjections H0(X,KX ⊗ Lq+1) → Hn−1−q,q

v (Y ) induced from (2.5), one
infers from (2.6) that there are surjections

(2.7) T ⊗Hp,q
v (Y )→ Hp+1,q−1

v (Y )→ 0

if p + q = n − 1 (see [90, Theorem 6.13] for example). This leads to the proof of
Theorem 2.3. For p+q = n−1, it’s clear that the fixed cohomology is infinitesimally
fixed, so Hp,q

f (Y ) ⊂ Hp,q
i.f. (Y ) and it suffices to prove the reverse inclusion, so let

ψ ∈ Hp,q
i.f. (Y ). Writing ψ = ψf +ψv from decomposition (2.4), we need to show that

ψv = 0. By definition d(ξ)ψ = 0 for all ξ ∈ T and d(ξ)ψf = 0 because ψf ∈ Hf (Y ),
so d(ξ)ψv = 0 for all ξ ∈ T and hence

0 = Q(d(ξ)ψv, ϕ) = −Q(ψv, d(ξ)ϕ)

for all ξ ∈ T and ϕ ∈ Hn−1
v (Y ). This is not possible, because the d(ξ)ϕ generate

Hp+1,q−1
v (Y ) and yet Q(ψv, ψv) 6= 0 from general properties of Q [9, 1.a.2].
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Remark 2.5. Looking at the proof, L must be taken sufficiently ample that

(1) The multiplication maps (2.6) are surjective for q ≥ 0 [9, 3.a.18].
(2) Hr(X,ΩpX⊗Lq) = 0 for r > 0, q > 0 to use the exact sequences [9, 3.a.11].
(3) The map H0(X, TX)→ H0(Y, TX ⊗OY ) is an isomorphism [9, 3.a.15].

In particular, these hold for d ≥ 4 when X = P3 and L = OP3(d).
By looking at tangent spaces, one sees that Noether’s Theorem follows from

the Infinitesimal Noether Theorem.

2.3. The explicit Noether theorem and Koszul cohomology. Noether’s
theorem tells us that the Noether-Lefschetz components V ⊂ NL(d) are proper,
that is, that c(V ) = codim(V, |OP3(d)|) > 0, but one can ask for a sharp lower
bound on c(V ). Carlson, Green, Griffiths and Harris make the following concrete
conjecture [9, 3.a.26]:

Conjecture 2.6. Let Sk ⊂ NL(d), d ≥ 4 be the family of surfaces S con-
taining a curve of degree k which is not a complete intersection of S with another
surface. Then c(Sk) ≥ d− 3 with equality only if k = 1.

Note that equality holds when k = 1 by Example 1.1. That the inequality holds
is the following result.

Theorem 2.7. (Explicit Noether-Lefschetz Theorem) If V ⊂ NL(d) is
an irreducible component, then V has codimension at least d− 3 in |H0(P3,O(d))|.

Theorem 2.7 was proved in 1984 by Mark Green using his theory of Koszul
cohomology [24, 25]. For a vector space V and a graded module M over the
symmetric algebra S∗V , the Koszul cohomology group Kp,q(M,V ) is the cohomology
in the middle of the fragment

(2.8) ∧p+1V ⊗Mq−1 → ∧pV ⊗Mq → ∧p−1V ⊗Mq+1

arising from the Koszul complex. These groups arise naturally in algebraic
geometry, for if F is a coherent sheaf on a variety X and L is a line bundle, then
M = ⊕d≥0H0(X,M⊗Ld) is a graded S∗V -module for any subspace V ⊂ H0(X,L).
Many classical results about generators and relations of the ideal of a projective
variety can be interpreted in terms of vanishings of Koszul cohomology groups; a
survey of these results can be found in [28, 29, 20, 32].

To state the relevant vanishing theorem, let W ⊂ H0(Pr,OPr (d)) be any base-
point free linear system. Multiplication endows Mk = ⊕t∈ZH0(Pr,OPr (k + td))
with a graded S∗W -module structure for each k ∈ Z.

Theorem 2.8. Kp,0(Mk,W ) = 0 if k ≥ p+ d+ codim(W,H0(Pr,OPr (d))).

Green first proved this with a spectral sequence argument [25, Theorem 2.16]
and later gave a slicker proof using a filtration of H0(Pr,OPr (d))/W with one
dimensional quotients and regularity properties [26, Theorem 1]. As a special case,
the multiplication map

(2.9) W ⊗H0(P3,O(d− 4))→ H0(P3,O(2d− 4))

is surjective if codim(W,H0(P3,O(d))) ≤ d− 4 (take p = 0, k = 2d− 4).
To sketch Green’s argument of Theorem 2.7, let V ⊂ NL(d) be an irreducible

component, let Y ∈ V be a smooth point of V with tangent spaces TV,Y ⊂ TUd,Y .
The differential to the period map induces δ : TUd,Y → Hom(H1,1(Y ), H0,2(Y )).
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Since S ∈ NL(d), there is a nonzero primitive Hodge class λ ∈ H1,1
prim(Y )∩H2(Y,Z)

which remains of type (1, 1) in directions v ∈ TV,Y : i.e., δ(v)(λ) = 0 for each
v ∈ TV,Y , but

δ(v)(λ) = 0 ⇐⇒ ∀ω ∈ H2,0, Q(δ(v)(λ), ω) = 0 ⇐⇒ ∀ω ∈ H2,0, Q(λ, δ(v)(ω)) = 0

so the image of the map φ : TV,Y ⊗ H2,0 → H1,1 given by φ(v ⊗ ω) = δ(v)(ω) is
contained in λ⊥ and therefore is not surjective. In view of Section 2.1.5, it follows
that the multiplication map Rd ⊗ Rd−4 → R2d−4 on graded pieces of the Jacobi
ring is not surjective and therefore neither is the map W ⊗ Sd−4 → S2d−4, where
W ⊂ Sd is the preimage of TV,S under the quotient map Sd → Rd. Now W is
base-point free because it contains J (which has no zeros because S is smooth), so
codim(W,Sd) ≥ d− 3 by the special case of Theorem 2.8 noted above.

Remark 2.9. We note some variants of Theorem 2.7.

(a) In 1989 Voisin gave another proof of Theorem 2.7 for d ≥ 5 which was
also based on analyzing the Jacobi ring [85].

(b) Green’s student Sung-Ock Kim extended the explicit Noether theorem to
complete intersection surfaces in Pn of fixed type in 1991 [53].

(c) Lopez and Maclean gave an explicit Noether theorem for smooth three-
folds X in 2007. For L a line bundle on X, the Noether-Lefschetz lo-
cus NL(L) is the set of smooth Y ∈ |L| for which the restriction map
PicX → PicY is not surjective. In terms of Castelnuovo-Mumford regu-
larity properties of L they give a lower bound on the codimension of the
components of the Noether-Lefschetz locus [61].

2.4. The degeneration proof of Griffiths and Harris. While the Hodge-
theoretic machinery is powerful, the degeneration argument of Griffiths and Harris’
[40] by contrast uses almost none of this. Their idea is to deform a very general
smooth surface S to a general reducible surface containing a plane, where it turns
out they can compute the Picard group.

To sketch their method, start with a smooth surface T of degree d − 1 and
a plane P generic with respect to T ; then choose a surface U of degree d generic
with respect to both of these surfaces. Let X be the pencil of degree-d surfaces
containing T ∪P and U parametrized by t, where t = 0 corresponds to the reducible
surface T ∪ P . If the respective equations of U, T and P are G,F and L, then X
has equation

tG− LF = 0

and it is clear that X has singularities at the d(d − 1) points pi where all three
surfaces meet in the central fiber t = 0. These singularities are isolated of the
analytic isomorphism type of the vertex of a cone over a smooth quadric surface,
and each one can be resolved by blowing up pi; in fact, one can blow down one of
the families of rulings on each exceptional surface to give a smooth family. Choose
in each case to blow down the ruling containing the intersection of the quadric with
the strict transform T̃ of T , and call the resulting smooth family X̃.

The central fibre X̃0 is reducible with components T̃ ∼= T and P̃ , the latter
of which is isomorphic to P with the pi blown up; these components meet in a
curve C̃ ∼= C. The Picard group Pic X̃0 can be understood as the fibered product
Pic P̃ ×Pic C̃ Pic T̃ via the restriction maps r1 : Pic T̃ → PicC, r2 : Pic P̃ → PicC.
The first restriction r1 is injective with finitely generated image ∼= PicT . Griffiths
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and Harris use a monodromy argument (the only hint of Hodge theory in their
proof) to show that ker r2 is the subgroup generated by OP̃ (dH−E1−· · ·−Ed(d−1)),
where H is the pullback of the hyperplane class on P and Ei are the exceptional
divisors of the blown up pi, and that Imr1 ∩ Imr2 = 〈OC̃(1)〉. This proves that

PicX0
∼= Pic P̃ ×Pic C̃ Pic T̃ ∼= Z× Z

with the first factor generated by O(1) and the second generated by a line bundle

M that is OP̃ (dH−E1−· · ·−Ed(d−1)) ∼= OP̃ (C̃) on P̃ and trivial on T̃ . Moreover,
M has a section Y such that Yt = P ∩Xt for t 6= 0.

Now suppose that there is a family Wt ⊂ Xt of curves coming from an effective
divisor W on X. After removing any components of P̃ or T̃ from W , the resulting
curve on X̃0 differs from a complete intersection OX̃(n) by some (positive or nega-
tive) multiple of Y , which is a complete intersection away from the central fibre and
therefore on U , as U was generically chosen. The more difficult (and interesting)
case occurs when the family of curves is not rational over the line parametrizing
the family Xt; the argument then involves delicate calculations on blowups of the
surface X̃0 (see [40, appendix]).

2.5. Dependency loci of sections of vector bundles. In 1985 Lawrence
Ein extended the Noether-Lefschetz theorem to dependency loci of generic sub-
spaces of a vector bundle E of rank r on a projective n-fold X. A t-dimensional
subspace T ⊂ H0(X,E) defines the map σT : T ⊗OX → E along with dependency
loci Dk(σT ) = {x : rankσT (x) ≤ k}. If E is generated by global sections and
2(r + 3 − n) > dimX, then Dt−2(σT ) is empty and YT := Dt−1(σT ) is a smooth
subvariety of dimension n + t − r − 1 so that one may ask about PicYT . To state
his theorem, Ein starts with a vector bundle F of rank r and considers integers
m1,m2,m3,m4 large enough that

A. The line bundle A = ΛrE ⊗KX ⊗OX(m1) is very ample.
B. Hi(F (m− i)) = Hi(F (m)⊗A−i) = 0 for i > n and m ≥ m2.
C. Hk(F ⊗ Λr−kF ⊗OX((r − k)m)⊗KX) = 0 for 0 < k < r and m ≥ m3.
D. For 0 < k ≤ r and m ≥ m4, Hn+t−k−1(ΛkF ⊗ΘX ⊗OX(km)⊗KX) = 0

and Hn+t−k−2(ΛkF ⊗ΘX ⊗OX(km)⊗KX) = 0.

(see [19, 2.4A,2.4B,2.4C,2.4D]). For E = F (m) with m ≥ max{m1,m2−1,m3,m4}
he proves the following [19, Thm. 2.2 and Thm. 2.4]:

Theorem 2.10. Let X be a smooth projective n-fold and E a vector bundle
of rank r on X. Suppose E is sufficiently ample (see above) and T ⊂ H0(E) is a
general t-dimensional subspace with YT smooth of dimension ≥ 2, then

(1) If t = 1, then PicYT ∼= PicX.
(2) If t > 1, then PicYT ∼= PicX ⊕ Z.

Remark 2.11. When t > 1, the “extra” copy of Z can be explained as follows.
Since rankσ|YT = t− 1, the kernel of the restriction σYT : T ⊗OYT → E|YT is a line
bundle, which freely generates the cokernel of the map PicX → PicYT .

Ein splits his proof into two cases. If dimYT > 2, the proof follows fairly easily
from diagram (1.2). If dimYT = 2, the proof is much harder and it is only here that
he uses the cohomological vanishings A-D above. While he makes no use of Hodge
structures, he does prove an infinitesimal comparison similar to Theorem 2.3, using



DEVELOPMENTS IN NOETHER-LEFSCHETZ THEORY 17

the fact that the obstructions to lifting a line bundle on Y infinitesimally are given
by the cup product H1(ΩY )⊗H1(TY )→ H2(OY ) [67].

Remark 2.12. For comparison, in the case r = t = 1 when X is a threefold
and E is a line bundle, his vanishings are used to deduce the following conditions,
which suffice for his proof:

(1) The multiplication map H0(X,L)⊗H0(X,KX ⊗ L)→ H0(X,KX ⊗ L2)
is surjective [19, 2.5.3].

(2) H1(ΩX) ∼= H1(ΩX |Y ) [19, 2.5.1].

Recall that a coherent sheaf F on Pn is (Castelnuovo-Mumford) m-regular if
Hi(Pn,F(m − i)) = 0 for all i > 0. This useful condition implies that F(m) is
generated by its global sections. The most important application of Theorem 2.10
is the following [19, Thm 3.3]:

Theorem 2.13. Let E be a (−2)-regular rank r vector bundle on Pn with n ≥ 3
and r ≥ n − 2. Let T ⊂ H0(E) be a generic subspace of dimension t = r + 3 − n.
Then YT is a smooth surface and PicYT = 〈OYT (1)〉 (resp. PicYT ∼= Z⊕Z) if t = 1
(resp. t > 1) unless

(1) E = OP3(2).
(2) E = OP3(3).
(3) E = OP4(2)⊕OP4(2).

This extends Corollary 1.15 because complete intersection surfaces are general
sections of direct sums of line bundles.

Remark 2.14. Spandaw has extended some of these results [79, 80].

2.6. Singular surfaces. In 1995 Joshi used ideas of Green [26] and Nori [66]
sketched in unpublished notes of Mohan Kumar and Srinivas [54] to prove a new
variant of Noether’s theorem [50, Propositions 2.1, 3.1 and 4.1]:

Theorem 2.15. Let X be a smooth threefold with very ample line bundle L and
assume

(1) H1(X,Ω2
X ⊗ L) = 0.

(2) H1(X,M ⊗KX ⊗ L) = 0, where M = ker(H0(X,L)⊗OX → L).

Then the the restriction map PicX → PicY is an isomorphism for the very general
surface Y ∈ |L|.

Joshi’s proof runs as follows. Let Y ⊂ X = X × |L| be the universal family
of surfaces and, for s ∈ |L| corresponding to a smooth surface Ys, let T ⊂ |L| be
the closed subscheme defined by the ideal sheaf m2

s. Base extension by T gives
universal infinitesimal deformations, i.e., the family YT ⊂ XT . The vanishing
hypotheses in Theorem 2.15 imply the vanishing H2(X,ΩYT ,XT |X×s) = 0, which
implies an infinitesimal Noether theorem, which implies the global Noether theorem
stated.

Remark 2.16. The vanishing (2) in Theorem 2.15 imples the surjectivity of the
multiplication maps (1) in Remark 2.12, but the first vanishing (1) doesn’t appear
to relate to any of Ein’s vanishing assumptions.

The comparison in the preceding remark suggests the following question:
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Question 2.17. For a smooth threefold X with very ample line bundle L,
are there cohomological vanishings implied by both Ein’s hypotheses from Remark
2.12 and Joshi’s from Theorem 2.15 that suffice for Noether’s conclusion to hold
for Y ∈ |L|?

Joshi’s most important contribution is the observation that one can pick up
the general singular surface with some extra vanishing hypotheses [50, Thm 5.1]:

Theorem 2.18. Let L be a very ample line bundle on a smooth threefold X.
Then for n � 0, the Noether-Lefschetz locus has codimension ≥ 2 in the complete
linear system |Ln|. In particular, the restriction PicX → PicY is an isomorphism
for the very general singular surface Y ∈ |Ln|.

What Joshi actually proves is that for a fixed point x ∈ X, the very general
surface Y containing the triple point defined by I2X,x satisfies the conclusion. Joshi’s
method is to consider the incomplete linear system defined by the triple point,

interpreting the problem on the blow-up X̃ → X at x. For L sufficiently ample
(obtained by replacing L with Ln), he works with a linear system which is base-
point free and big, an idea we have already seen in Theorem 2.21.

2.7. Normal ambient threefolds. Ravindra and Srinivas have extended
some of these results to hypersurfaces of normal ambient spaces. Their version
of Noether’s theorem for hypersurface sections of a normal threefold follows [74]:

Theorem 2.19. Let f : X → Pn be a morphism of a normal projective threefold
such that OX(1) is ample and assume that (f∗KX)(1) is generated by its global
sections. Then for the very general hyperplane H ⊂ Pn, the surface Y = f−1(H) is
normal and the restriction map ClX → ClY on class groups is an isomorphism.

To prove the theorem, they prove an analogous statement on a desingularization

X̃ → X for big and base-point free line bundles. In this setting, their method has
the same spirit as Grothendieck’s proof of Theorem 1.16, using the formal comple-

tion of X̃ along Ỹ . In particular, there is no use of Hodge theory. To see Theorem
1.3 as a special case, take f : P3 ↪→ PN to be the d-uple embedding. Working in PN
we interpret (f∗KP3)(1) as OP3(−4)(d) = OP3(d − 4) which is generated by global
sections for d ≥ 4.

After explaining the statement and methods of their theorem, Srinivas says
that it is not clear what the most general assertion is in the direction of Noether’s
theorem, as statement that would include Theorem 2.19 above and the classical
statement. We agree, and pose the question:

Question 2.20. Is there a common generalization to the various forms of
Noether’s theorem presented here? What form would such a statement take?

Ravindra and Srinivas have also proved a variant of the Grothendieck-Lefschetz
theorem for normal ambient varieties [73]:

Theorem 2.21. Let X be a normal projective variety, L an ample line bundle
on X and V ⊂ H0(X,L) be a base point free linear system. Then the general
member Y ∈ |V | is normal and the restriction map r : ClX → ClY satisfies the
following:

(a) If dimX ≥ 4, then r is an isomorphism.
(b) If dimX = 3, then r is injective with finitely generated cokernel.
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Their proof reduces to an analogous result on a desingularization π : X̃ → X

where the pull-backs Ỹ of Y ∈ |V | are smooth but no longer correspond to an ample
line bundle. Instead, π∗L is base-point free and big, meaning that tensor powers Lk

define maps that are birational onto their images for k � 0. They prove a variant
of Theorem 1.16 for base-point free big linear systems, using a method similar to
that of Grothendieck, including the use of Lefschetz conditions.

2.8. Noether’s theorem with base locus. We discuss our extension of the
classic Noether-Lefschetz Theorem to linear systems V ⊂ H0(OP3(d)) having a
fixed base locus Z, the main result being a computation of the class group ClY
of the general member Y ∈ |V |. Our theorem recovers both Theorems 1.3 and 3.8
but has something new to say when Z is non-reduced or has points of embedding
dimension three.

A theorem of Lopez (see Theorem 3.8 below) says that the general surface S
containing a smooth curve Z has Picard group freely generated by Z and OS(1), a
geometrically pleasing result [60]. What happens if we replace Z with an arbitrary
curve, possible reducible, non-reduced and unmixed? Assuming Z lies on a normal
surface, it’s natural to ask what the ClS looks like. Our answer is the follows [4,
Theorem 1.1]:

Theorem 2.22. Let Z ⊂ P3
C be a closed subscheme of dimension at most one

with at most finitely many points of embedding dimension three. If IZ(d − 2) is
generated by global sections with d ≥ 4, then the very general surface of degree d
containing Z is normal with class group ClS freely generated by OS(1) and the
supports of the curve components of Z.

The hypotheses on Z are the weakest that ensure Z lies on normal surfaces
of high degree. For simplicity we have stated the theorem assuming IZ(d − 2) is
generated by global sections, but it is enough to assume that either

(1) Z is reduced of embedding dimension two or
(2) H0(IZ(d− 2)) 6= 0.

The proof of Theorem 2.22 is based on the degeneration argument of Griffiths and
Harris (see Section 2.4). The construction is complicated by the fact that the
general surface containing Z may be forcibly singular; we therefore construct an
étale covering of the blown-up family in order to sort out the singularities on the
fibers.

Remark 2.23. We note special cases in which one can read off PicS.

(a) If Z is empty, then PicS = 〈OS(1)〉 and we recover the classic Noether-
Lefschetz theorem.

(b) If dimZ = 0 (i.e., r = 0), then again ClS = 〈OS(1)〉; this reveals the
geometrically intuitive fact that codimension two base loci don’t affect
the class group. Since OS(1) is a line bundle, PicS = ClS. If Z has
points of embedding dimension three, this strengthens Theorem 2.18.

(c) The most interesting case occurs when Z is a curve with irreducible com-
ponents Z1, Z2, . . . Zr. Here are some samples:
(i) If Z is a reduced local complete intersection and the Zi intersect at

points of embedding dimension 2, then PicS = 〈OS(1), Z1, . . . , Zr〉.
(ii) If Z is an integral local complete intersection curve, then the Picard

group of S is PicS = 〈OS(1),OS(Z)〉.
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(iii) If Z has embedding dimension 2, then PicS = 〈OS(1), Z1, . . . , Zr〉.

Remark 2.24. If p is a point on a normal surface S, the natural restriction map

ClS → ClOS,p is surjective and the natural map ClOS,p ↪→ Cl ÕS,p is an inclusion,

so one can identify ClOS,p as the image of the composite ClS → ClOS,p → Cl ÕS,p.
For S a very general surface containing Z as in Theorem 2.22 above, it follows that
the local class group ClOS,p is generated by the supports of the curve components
of Z, which makes the class group computable for such local rings. We used this
to compute the class groups of local rings on such surfaces for various base loci [6].
Moreover, from this data one can use Jaffe’s exact sequence

0→ PicS → ClS → ⊕p∈SingS ClOS,p
to compute the Picard groups of the singular surfaces. In Section 4 we will see
applications of this technique to questions of Srinivas.

Remark 2.25. In related work, Di Gennaro and Franco have recently computed
the Néron-Severi groups of general high degree hypersurface sections of a smooth
complete intersection Y of odd dimension containing a fixed base locus Z, provided
that the general such hypersurface section H ∈ |H0(IZ,Y (d))| [16]. Thus in the
special case Y = P3 and Z reduced of embedding dimension two they recover the
conclusion of Theorem 2.22, but their method says nothing about the class groups
if Z is more general.

3. Components of the Noether-Lefschetz locus

While Noether’s theorem says that each irreducible component V ⊂ NL(d)
is proper in the space |OP3(d)| of surfaces of degree d for d > 3, one can ask
deeper questions about these components. In this section we survey what is known
about the nature of these components. Specifically, we discuss bounds on the
codimensions of the components, the density of the general components due to
Ciliberto, Harris and Miranda [13], the work of Green and Voisin classifying those
of smallest codimension [27, 85, 86], including the asymptotic result of Ontinowska
[68], and result of Ciliberto and Lopez on the distribution of codimensions [14].
We close with Voisin’s example of Noether-Lefschetz loci having infinitely many
special components [88].

3.1. The density theorem. Noether’s theorem and its variations tell us that
the components of the Noether-Lefschetz locus NL(d) ⊂ |OP3(d)| are proper subva-
rieties. For such a component V ⊂ NL(d), the explicit Noether-Lefschetz theorem
gives a lower bound on the codimension of V , namely d− 3 ≤ c(V ). Hodge theory
provides an upper bound as well [9, 3.a.25]: a class λ ∈ H2(S,C) is algebraic if and
only if it has type (1, 1), which is equivalent to the vanishing

∫
λ
ω = 0 for each holo-

morphic 2-form ω ∈ H0(S,Ω2
S). These vanishings impose pg(S) = dimH0(S,Ω2

S)
conditions which define NL(d), and hence

(3.1) d− 3 ≤ c(V ) ≤ pg =

(
d− 1

3

)
.

One expects the conditions arising from the differentials ω ∈ H0(S,KS) to be
independent, so the components of codimension pg are called general while the
other components are called special. The first following result tells us about the
distribution of the general components.
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Theorem 3.1. (The density theorem) The union of general components of
NL(d) is Euclidean dense (and hence Zariski dense) in |OP3(d)|.

Ciliberto, Harris and Miranda proved that the union of general components
of NL(d) is Zariski dense by induction on d, using the dense union of general
components in degree d−1 to construct infinitely many such components in degree d:
to show density, they show that the closure contains the family R(d) of (reducible)
surfaces containing a plane (see the Griffiths-Harris degeneration proof, § 2.4) and
that these components approach R(d) in directions which are dense within the
normal bundle to R(d) [13]. The stronger result follows from an argument of Mark
Green showing that the existence of just one general component already implies
that NL(d) is dense in the Euclidean topology.

We sketch an argument based on Green’s, using notation from § 2.1.5. If NL(d)
has a general component, then there is a surface Y0 and a Hodge class λ ∈ H2(Y0,Q)
for which the Hodge locus Uλ has codimension pg. To show Euclidean density,
consider an open ε-ball Bb ⊂ B about an arbitrary point b ∈ B and construct a
contractible tubular neighborhood U of a path from b to 0 which contains Bb. The
real vector bundle H2

R with fibers H2(Y,R) is trivial over U , so we can form the
diagram

H1,1
R |U

σ
↪→ H2

R
∼= U ×H2(Y0,R)

π2→ H2(Y0,R)
↓ ↓ π1
U = U

where H1,1
R is the real subbundle with fibers H1,1(Y,R). The composite map

G = π2 ◦ σ is injective on fibers and G−1(H2(Y0,Q)) is the set of Hodge classes.
If N ⊂ H2(Y0,Q) is the complement of the subspace generated by c1(O(1)),
then π1(G−1(N)) = NL(d) ∩ U . Note that N ⊂ H2(Y0,R) is dense because

dimH2(Y0,R) > 1 for d > 4. One can use the complex bundles H2,0
C ⊕H

1,1
C ⊂ H2

C
to show that the image of G contains an open neighborhood of λ ∈ H2(Y0,R),

hence S = {x ∈ H1,1
R |U : dGx has maximal rank} is non-empty [13, Basic Claim,

p. 679]. As the complement of a closed analytic set, S is therefore dense in H1,1
R |U

and G|S : S → H2(Y0,R) has the local structure of a real projection [72]. It fol-

lows that G−1(N) is dense in H1,1
R , so π1(G−1(N)) is dense in U and in particular

intersects Bb.

Remark 3.2. Sung-Ock Kim extended Green’s argument to the space of com-
plete intersection surfaces in higher dimensional projective spaces [53], and Voisin
proved a variant valid for variations of Hodge structures [90, Prop. 5.20].

3.2. Components of small codimension. Given that the general compo-
nents of NL(d) are dense, it is natural to investigate what the components of small
codimension might look like. Are they also dense? What are the possible codi-
mensions? How are they distributed? Ciliberto, Harris and Miranda asked the
following question [13].

Question 3.3. Do the Noether-Lefschetz components V ⊂ NL(d) having small
codimension consist of surfaces containing curves of small degree?

To make this question precise one would have to specify how small is “small,”
but the general idea is clear. The answer is yes for the smallest codimensions:

Theorem 3.4. For d > 4, each Noether-Lefschetz component V ⊂ NL(d) has
codimension c(V ) > 2d− 7 with two exceptions:
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(a) The family V of surfaces containing a line, for which c(V ) = d− 3.
(b) The family V of surfaces containing a conic, for which c(V ) = 2d− 7.

Example 3.5. This theorem tells the whole story when d = 5: the Noether-
Lefschetz locus NL(5) has one component of codimension d − 3 = 2 (the surfaces
containing a line), one component of codimension 2d−7 = 3 (the surfaces containing
a conic) and infinitely many components of codimension pg = 4, which are dense
in |OP3(5)| by Theorem 3.1.

Theorem 3.4 (a) was proved by Voisin in 1988 [85] and independently by
Green [27] by a surprising application of Gotzmann’s persistence theorem [23]
and Macaulay’s growth bound [62]. Voisin obtained the complete theorem stated
in 1989 [86]. Building on the technique of Green and Voisin, Otwinowska extended
Theorem 3.4 in an asymptotic sense to components of codimension roughly bd for
any integer b > 0 for the generalized Noether-Lefschetz locus (2.2) from in Section
2.1.5. Her interesting result gives evidence toward the Hodge conjecture for m > 1
and asymptotically confirms Conjecture 3.3 for m = 1 [68, Corollary 3]:

Theorem 3.6. Fix integers b > 0, m > 0 and set N = 2m + 1. Then for
d � 0, any component V of the Noether-Lefschetz locus NL(d) ⊂ |OPN (d)| with

c(V ) ≤ bd
m

m! consists of hypersurfaces containing an m-dimensional subvarieties of
degree ≤ b.

Most of Otwinowska’s proof is devoted to a purely algebraic result to the effect
that for d sufficiently large with respect to fixed t < r, if I ⊂ S = C[x0, . . . , xr] is a
homogeneous ideal containing r+1 polynomials of degree d−1 which form a regular
sequence and S/I is a finite length Gorenstein ring of socle degree (t + 1)(d − 2)

with dim(S/I)d ≤ bd
t

t! , then I contains an ideal IV defining a subscheme V of pure
dimension t and degree at most b. Taking inspiration from work of Voisin [86],
Otwinowska applies this result to ideals Er which describe deformations of order
r + 1 to Uλ in a neighborhood of a hypersurface F to obtain the result, though
there is some extra work to show that Vred ⊂ F .

3.3. Distribution of codimensions. The results above give an understand-
ing of what happens for Noether-Lefschetz components of the largest and smallest
codimensions according to (3.1), but what happens in between? The answer is
that there are some gaps in the codimension c(V ) at the bottom, but Ciliberto and
Lopez showed that there are no gaps beyond codimension roughly 9/2d1.5 [14]:

Theorem 3.7. For each degree d ≥ 8 and each integer c with

min{3/4d2 − 17/4d+ 19/3, 9/2d3/2} ≤ c ≤ pg =

(
d− 1

3

)
there exists a component V ⊂ NL(d) of codimension c(V ) = c.

Their construction is lengthy, as they must construct families of each codimen-
sion. As a main tool towards building these families, they prove in general that if
W is a component of the Hilbert scheme for curves in P3 whose general member C
is smooth such that

(1) IC is (d− 1)-regular.
(2) H1(IC(d− 4)) = 0,
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then the family V of degree d surfaces containing a curve C ∈ W is a component
of NL(d) having codimension c(V ) = h0(OC(d − 4)) − dimW + 4 degC. With
this established, they use well known families of curves with general moduli and
on smooth cubic surfaces satisfying (1) and (2) to construct components and keep
careful track of the codimensions they obtain. The general surface S in V has a
predictable Picard group:

Theorem 3.8. Let d ≥ 4 be an integer and C ⊂ P3 be a smooth connected
curve such that IC(d − 1) is generated by global sections. Then the very general
surface S containing C of degree d has Picard group PicS ∼= Z2 generated by OS(1)
and C.

Lopez proved a stronger theorem [60, Theorem II.3.1], but it is this special
case [60, Corollary II.3.8] that has found many applications [14, 10, 21]. While
Lopez used the degeneration method of Griffiths and Harris to prove his result
(see §1.4 above), we give a short argument using Theorem 2.19. The linear system
H0(IC(d)) ⊂ H0(O(d)) gives a birational map P3 → PH0(IC(d)) whose indeter-
minacy locus is C. Blowing up C yields the diagram

E ⊂ P̃3 σ
↪→ PH0(IC(d))

↓ ↓ π
C ⊂ P3

where π : P̃3 → P3 is the blow-up and the exceptional divisor E is a P1-bundle
over C via π. By the construction in [71, Proposition 4.1], σ is a closed immersion
defined by the very ample line bundle L = π∗O(d) − E. The canonical class on

P̃3 is given by KP̃3 = π∗KP3 + E and therefore (σ∗KP̃3)(1) may be thought of as

KP̃3 ⊗ L = π∗O(d − 4) on P̃3 which is generated by global sections since d ≥ 4.

Applying Theorem 2.19 above, the map Pic P̃ 3 → PicY is an isomorphism for very

general Y ∈ |L|. Since Pic P̃3 is freely generated by π∗O(1) and E, the same is true
of PicY . Finally the map π induces an isomorphism Y → S = π(Y ) in which the
class of E on Y becomes the class of C on S, therefore PicS freely generated by
O(1) and C.

Regarding Theorem 3.8, it is difficult to imagine a component V ⊂ NL(d)
whose generic surface has Picard number greater than two. Indeed, Ciliberto,
Harris and Miranda ask the following natural question [13]:

Question 3.9. If S is a general surface in a Noether-Lefschetz component
V ⊂ NL(d), is PicS ∼= Z2?

3.4. Voisin’s example. The results of Green and Voisin in Section 3.2 were
at least partially motivated by Harris’ conjecture that NL(d) should have only
finitely many special components for d ≥ 4 [27, p. 301]. This is certainly true for
d = 4 (because all components are general) and for d = 5 by Example 3.5; there’s
no doubt that Noether knew of many more when he stated Noether’s theorem in
the first place. One approach to proving it arises from infinitesimal variations of
Hodge structures. Griffiths and Harris observe that if S is a general member of
a special component, then H0(S,KS(−Γ)) ⊂ H2,0(−γ) [39, 4.a.4]. Green asked
whether every special component V has the following special property: that for
general S ∈ V there is a canonical form ω ∈ H0(S,KS) which is the supporting
divisor of the class λ ∈ H1,1 ∩ HZ. A positive answer would yield a proof of the
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conjecture. For d = 6, 7, Voisin proved even a stronger statement [87, 0.3], but she
notes that the two supporting lemmas are false for d > 7. After the work towards
proving Harris’ conjecture, it was finally Voisin who produced a counterexample in
1991 [88]:

Example 3.10. Fix s > 0 and let U denote the family of surfaces Σ of degree
d = 4s given by equations of the form

0 = P (F0, F1, F2, F3)

where Fi are polynomials of degree s in xi having no common zeros and P is
a quartic polynomial. Geometrically Σ is the pull-back of the quartic surface
S with equation 0 = P (y0, y1, y2, y3) under the map ψ : P3 → P3 given by
ψ(x0, x1, x2, x3) = (F0, F1, F2, F3) and hence the general member of U is smooth by
Bertini’s theorem. Voisin uses an infinitesimal argument to show that the general
member of U is not contained in NL(d). On the other hand, the finite map yields
injections PicS → Pic Σ, so the infinitely many dense codimension 1 components
of NL(4) pull back to infinitely many dense codimension 1 families contained in
U ∩ NL(d). Each such family is contained in a special component of NL(d) for
s large by reason of dimension: Voisin shows that dimU = 4(h0(O(s)) − 4) + 34,
which is strictly larger than the dimension 1+2d2 of a general component of NL(d).
Since they are dense in U , they cannot be contained in a finite union of special com-
ponents from NL(d). Noting that each of these families is contained in U , Voisin
poses the following question [88, 0.5]:

Question 3.11. Is the union of special components of the Noether-Lefschetz
locus NL(d) Zariski dense in |OP3(d)|?

4. Class groups and Noether’s theorem

Given a normal Noetherian local domain A with completion Â, it is well known
that the induced map ClA→ Cl Â on class groups is injective [76, Proposition 1].
In [82, Question 3.1] Srinivas poses the following general question:

Question 4.1. Given Â, what are the possible images of this injection?

He follows this up with a more specific question [82, Question 3.7]:

Question 4.2. Given Â, does there exists A such that ClA is generated by its
canonical module ωA?

Since freeness of ωA is equivalent to A being Gorenstein, and the Gorenstein
property is stable under completion, Question 4.2 reduces in the case that Â is
Gorenstein to whether ClA can be trivial, i.e., whether A can taken to be a UFD.

Heitmann actually characterized complete local rings which are completions of
a UFD, proving that a complete local ring A is the completion of a UFD if and only
if A is a field, A is a DVR, or A has depth ≥ 2 and no integer is a zero-divisor of A
[48]. Heitmann’s construction, however, is set-theoretic, and the UFD he produces
is in general not an excellent ring. Therefore, Srinivas poses the question in the
context of so-called “geometric” rings, that is, those that are essentially of finite
type over C. In the sequel, all rings under consideration are geometric rings or
completions of such, and we take Question 4.2 to be posed for geometric rings.

In studying theK-theory of the local rings defining rational double point surface
singularities, Srinivas in [81, § 2] found that such a ring is always the completion of a
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(geometric) UFD. This result is greatly generalized by Parameswaran and Srinivas,
who prove the following [69, Theorems 1 and 2]:

Theorem 4.3. The answer to Question 4.2 is affirmative for isolated complete
intersection singularities of dimensions 2 and 3 (and therefore of all dimensions).

Remarks 4.4.
(1) Since a complete intersection is Gorenstein, Theorem 4.3 shows that the

local ring of such a singularity has a UFD in its analytic isomorphism
class.

(2) The reason that dimensions 2 and 3 are the critical ones for this result
is that a theorem of Grothendieck [42, Exp. XI] states that a complete
local ring of dimension ≥ 4 that is a complete intersection and regular in
codimension 3 – true when the singularity is isolated – is already a UFD,
and therefore so is any local ring that completes to it.

The method of Parameswaran and Srinivas is roughly as follows: Given the
local ring A of a complete intersection isolated singularity at the origin in Cn,
they show that a sufficiently general perturbation of the polynomials defining the
singularity by polynomials in a sufficiently high power of the maximal ideal of A
defines a surface S with a singularity at the origin that is analytically isomorphic
to A. They then construct a Lefschetz-type pencil of such surfaces and show via a
monodromy argument that the general surface has the property that ClPnC → ClS
is an isomorphism, which means that ClS is generated by OS(1), so that the class
group of the local ring of S at the origin must be trivial and thus the local ring a
UFD.

Using methods motivated by the classical Lefschetz proof but also involving so-
phisticated applications of singularity theory and adjunction theory, Parameswaran
and van Straten [70, Thm. 1.1] give a solution for any normal surface singularity:

Theorem 4.5. The answer to Question 4.2 is affirmative for all normal surface
singularities.

Theorem 2.22 can be applied to Questions 4.1 and 4.2 for hypersurface singu-
larities: In [5, Thm. 1.2] we prove the following:

Theorem 4.6. Let A = C[[x1, . . . xn]]/f , where f is a polynomial defining a va-
riety V which is normal at the origin p. Then there exists an algebraic hypersurface

X ⊂ PnC and a point p ∈ X such that R = OX,p is a UFD and R̂ ∼= A.

Thus Question 4.2 has an affirmative answer for all normal hypersurface singu-
larities, isolated or not.

The method of proof is as follows: By normality and the Jacobian criterion, the
ideal (f, fx1 , fx2 , ...fxn) defines a subscheme Y whose components containing the
origin all have codimension at least 3 in PnC. Taking Z to be a suitable thickening
of these components (defined in fact by (f, f3x1

, f3x2
, ...f3xn)), and using power-series

arguments similar to those used in the proof of Theorem 4.3 above, show that the
very general hypersurface X of high degree containing Z has a singularity at the
origin analytically isomorphic to that of V . On the other hand, since Z has no
components in codimension 2, Theorem 2.22 implies that ClX = 〈OX(1)〉, so that
the class group of OX,p is trivial; therefore OX,p is a UFD in the desired analytic
isomorphism class.
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For many relatively well behaved base loci in P3
C, such as multiplicity structures

on a smooth curve lying on a smooth surface or unions of such, we have shown that
the singularities of the very general surface containing such a base locus has only
rational double point singularities [6]. We exploit this fact to prove the following [5,
Thm. 1.3], which generalizes the above-mentioned result [81, § 2] of Srinivas:

Theorem 4.7. Fix T ∈ {An,Dn,E6,E7,E8} and a subgroup H of the class
group of the completed local ring for a singularity of type T . Then there exists an
algebraic surface S ⊂ P3

C and a rational double point p ∈ S of type T such that
ClOS,p ∼= H.

Vis a vis Question 4.1, then, in the case of rational double point surface singu-
larities, every subgroup arises as the image of the natural injection ClA→ Cl Â.

The method of proof here is to construct a 1-dimensional base locus Z supported
on an irreducible curve C such that the very general surface S of sufficiently high
degree containing Z has the appropriate singularity. By Theorem 2.22, ClS is
generated by C, so we also ensure that C generates the appropriate subgroup in
the completion.
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