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Abstract

Let F be a normalized rank 2 reflexive sheaf on P3 with Chern
classes c1, c2, c3. Let α be the least integer such that 0 6= H0F(α) and
β be the smallest integer such that H0F(n) has sections whose zero
scheme is a curve for all n ≥ β. We show that if T0 is the largest root
of the cubic polynomial

P (T ) = T 3 − (6c2 + 6αc1 + 6α2 + 1)T + 3(2α+ c1)(c2 + c1α+ α2)

then β ≤ bT0c − α − c1 − 1. There are applications to the smallest
degree of a surface containing a curves which are the zero schemes of
sections of H0F(α).

1 Introduction

In this paper we consider rank 2 reflexive sheaves F on P = P3
k, where k is an

algebraically closed field of characteristic zero. Suppose that F has Chern

0Written with the support of the University Ministry funds.
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classes c1, c2, c3 and let α be the smallest integer such that H0F(α) 6= 0.
Then we have the following bound (see [H2], theorem 0.1):

Theorem 1.1 (Hartshorne) If F is a normalized (i.e. c1 = 0 or −1) stable
rank two reflexive sheaf on P3, then

α ≤
√

3c2 + 1 +
3

4
c1 − 1− 1

2
c1.

Moreover, this bound is sharp for all pairs (c1, c2) (except for (−1, 2) and
(−1, 4)), equality being realized by bundles with natural cohomology. In this
paper we are interested in which twists of F have sections which are not
multiples of some 0 6= s ∈ H0F(α).

In the earlier paper [RV1], the second and third author introduce the
invariant β = min{n : h0(F(n)) > h0(OP(n−α))}, the twist of the so called
“second relevant section of F”. Is is easy to see that the general non-zero
section of F(n) gives rise to a curve if and only if either n = α or n ≥ β (see
[GRV], theorem 0.1). In the case n = α, we call this curve (which need be
neither reducible nor reduced) a minimal curve for F . If a curve C is the
scheme of zeros of a non-zero section of F(n), then the smallest degree r of
a surface containing C is n+ α+ c1 if n > α and β + α+ c1 if n = α. Thus
β determines the minimal degree of a surface containing a minimal curve for
F as well as determining which twists of F give rise to curves which are not
minimal.

In the papers [RV1] and [RV2], the second and third authors give some
upper bounds for β in terms of α, c1 and c2. In particular they show that
if F is unstable (we say that F is stable if α > 0, semistable if α + c1 ≥ 0,
unstable otherwise) and T0 is the largest root of the cubic polynomial

P (T ) = T 3 − (6c2 + 6αc1 + 6α2 + 1)T + 3(2α + c1)(c2 + c1α + α2),

then β ≤ T0 − α − c1 − 1. For semistable sheaves other and higher bounds
have been proved in the same papers. The aim of the present paper is to
show that the bound above (β ≤ bT0c−α−c1−1) also holds in the semistable
case.

We emphasize that the cubic polynomial P (T ) above arises naturally if
one looks at the Euler characteristic of F . Indeed, we have that P (T ) =
6χ(F/O(−α)(T −α−c1−2))−3c3 and in the case that F is a vector bundle
(c3 = 0) our theorem states that H0(F/O(−α)(t)) 6= 0 for t greater than

2



the last root of χ(F/O(−α)(t)). For vector bundles F , Hartshorne’s original
theorem can be phrased this way as well: it states that for t greater than the
last root of χ(F(t)), we have H0(F(t)) 6= 0.

In section two we prove the main theorem of the paper. The principal tool
of our proof is a reduction step which allows us to induct on c2. This reduction
step was introduced in [H2], although we use the strengthened version found
in [RV2]. In section three we give an application to the minimal degree of
surfaces containing a curve and some examples in which our result is sharp.

The first author would like to thank his hosts in Torino for their hospital-
ity during his visit in which this paper was initiated, as well as the Universitá
and Politecnico of Torino for monetary support.

2 The Main Theorem

In this section, we adopt the following conventions. The invariants α and β
have already been defined in the introduction. We let a and b denote the
analogous notions for the restriction FH of F to a general plane H ⊂ P, that
is a = min{t : H0FH(t) 6= 0} and b = min{t : H0FH/OH(−a)(t) 6= 0}. The
symbol ∗ denotes the k-vector space dual. We further set δ = c2(F(α)) =
c2 + c1α + α2, the degree of a minimal curve for F . In terms of δ, the cubic
polynomial mentioned in the introduction takes on the simpler form

P (T ) = T 3 − (6δ + 1)T + 3(2α + c1)δ.

We begin with some lemmas that allow us to make a reduction step in
the proof of the main theorem. The first two of these lemmas can essentially
be found in [RV2].

Lemma 2.1 Let F be a semistable rank 2 reflexive sheaf on P3, 0 6= x ∈
H2F(t)∗ and f ∈ H0O(d) an annihilator for x of minimal degree. If r =
t+ 4− d > 0, then the surface X defined by f = 0 is an unstable surface for
F of order r and there is an exact sequence

0 −→ G(−ε) −→ F −→ IZ,X(−r) −→ 0

where G is a normalized rank 2 reflexive sheaf and Z has codimension ≥ 1
in X. Moreover, if G has Chern classes c′1, c

′
2, c
′
3, and k is the degree of the

curve part of Z, then
2ε = d− c1 + c′1
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c′2 = c2 − d(t+ 4 + c1 − d)− 1

4
(d− c1)2 −

1

4
c′1 − k < c2

2α + c1 − d ≤ 2α′ + c′1 ≤ 2α + c1 + d where α′ = α(G)

2β + c1 − d ≤ 2β′ + c′1 where β′ = β(G)

Proof: The first part is proved in [H2], example 1.0.5 and proposition 1.1.
The proof of the inequalities is found in [RV2], lemma 2.1.

Lemma 2.2 Let F be a semistable rank 2 normalized reflexive sheaf and
assume that H2F(t) 6= 0 for some integer t. Then

(a) There is x ∈ H2F(t)∗ whose image xH ∈ H1FH(−t − c1 − 4) is 6= 0
for a general plane H.

(b) Taking x as in part (a), let d be the smallest integer such that xH is
annihilated by an element of H0OH(d) for all H. If we further have

(i) t+ 3 > a+ d and
(ii) t+ 4 > 2d− a− c1,
then x has only one (up to a unit) annihilator f in H0OP3(d).

Proof: Part (a) is [RV2], proposition 3.3. For part (b), we first add the
inequalities of (i) and (ii) and divide by 2 to obtain−t−c1−4+ 1

2
(3d+c1+1) <

0 and (ii) can be written −t− c1−4+2d−a < 0. Taking l = −t− c1−4, the
hypotheses of [H2], proposition 3.1 are met and we deduce conclusion (b).

Lemma 2.3 Let t be an integer such that t+ α + c1 + 2 is greater than the
largest root of P (T ) and assume that H2F(t) 6= 0. Let 0 6= s ∈ H2F(t)∗

whose image sH ∈ H1FH(−t − c1 − 4) is 6= 0 for a general plane H and let
d be the smallest degree of an annihilator of sH . Then we have:

(1) d ≤ a+ b+ c1 and d ≤ 2a+ c1 + 1 if a < α;
(2) t+ 3 > d+ a
(3) d ≤

√
2c2 − 2a2

(4) t+ 4 > 2d− a− c1.

Proof: Statement (1) is [RV1], lemma 2.1 (ii) and [H2], corollary 4.2. For (2)

it is sufficient to prove that t + α + c1 + 2 ≥
√

3c2 + 1 + 3
4
c1 + α + 1

2
c1 by

[H2], proposition 4.3. Substituting T =
√

3c2 + 1 + 3
4
c1 +α+ 1

2
c1 into P (T ),

we check that the value obtained is not positive:

P (

√
3c2 + 1 +

3

4
c1 + α +

1

2
c1) =
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= −(

√
3c2 + 1 +

3

4
c1 − α−

1

2
c1)((

√
3c2 + 1 +

3

4
c1 − α−

1

2
c1)

2 − 1) ≤ 0

by theorem 1.1.
With the inequality of part (2) proved, part (3) follows immediately from

[RV2], lemma 2.4. In the case a < α part (4) follows from the second inequal-
ity of part (1) and the inequality of part (2): t+ 4 > a+ d+ 1 ≥ 2d− a− c1.
Thus we may assume that a = α.

First suppose α ≥
√

4
5
c2. From part (3) we have d ≤

√
2
5
c2 and hence

t+α+c1+2 ≥
√

3δ + 1 >
√

8
5
c2 > 2d−2. (To see that t+α+c1+2 ≥

√
3δ + 1

it suffices that P (
√

3δ + 1) ≤ 0 and this is the case:

P (
√

3δ + 1) =
√

3δ + 1(−3δ) + 3(2α + c1)δ = 3δ(2α + c1 −
√

3δ + 1) ≤ 0).

We can obtain (4) in the remaining case (a = α <
√

4
5
c2) by proving that

t+ 4 > b+ d, since d+ b ≥ 2d− a− c1 by part (1).
If not, then t+ 3− b < d and hence (as in [RV1], Prop. 2.3)

(t+ 4− b)(t+ 5− b)
2

≤ h1E(−b− c1 − 1) = δ − (a+ b+ c1)
2

2
+
a+ b+ c1

2
.

By easy calculations this may be rewritten

1

2
(X2 − 4δ) +

1

2
(X − 2Y )2 + 3(X − 2Y ) + 2X + 6 ≤ 0

where X = t+ a+ c1 + 2 and Y = a+ b+ c1. This last inequality is clearly
false because X ≥

√
4δ and 1

2
(X − 2Y )2 + 3(X − 2Y ) ≥ −9

2
(To see that

X ≥
√

4δ, it suffices that P (
√

4δ + 1) = (
√

4δ + 1− 3α− 3
2
c1)(−2δ) ≤ 0, but

this is easily checked using the hypothesis that α <
√

4
5
c2).

Corollary 2.4 If t + α + c1 + 2 is larger than the largest root of P (T ) and
H2F(t) 6= 0, then there is a reduction step for F as described in lemma 2.1.

Theorem 2.5 Let F be a semistable rank 2 normalized reflexive sheaf and
T0 the largest root of the polynomial P (T ). Then β ≤ bT0c − α− c1 − 1.

Proof: We induct on c2. By [RV1], theorem 4.3(1), the theorem holds for
unstable reflexive sheaves, which proves the theorem when c2 < 0. Thus we
may assume that c2 > 0 and proceed to the induction step.
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Let t be an integer such that T1 = t + α + c1 + 2 is greater than T0;
Riemann-Roch gives:

χF(t) = 2

(
t+ 3

3

)
− c1

(
t+ 2

2

)
− c2(t+ 2) +

1

2
(c3 − c1c2).

A calculation shows that P (T1) = 6χF/O(−α)(t) − 3c3. In particular, we
have that χF(t) > 0. If H2F(t) = 0, then we conclude immediately that
H0F(t) > 0.

So assume that H2F(t) 6= 0. By induction hypothesis we assume that the
statement is true for every rank 2 semistable normalized reflexive sheaf with
second Chern class < c2. By corollary 2.4 there is a reduction step giving
a new sheaf G with c′2 = c2(G) < c2 (see lemma 2.1). We will prove that
t′ = t − 1

2
(d − c1 + c′1) satisfies the same conditions relative to G. This will

imply the claim for F , because the claim is true for G and moreover ([RV2]
lemma 2.1) t = t′ + 1

2
(d− c1 + c′1) ≥ β′ + 1

2
(d− c1 + c′1) ≥ β.

We have to prove that P ′(T ) = T 3− (6δ′+ 1)T + 3(2α′+ c′1)δ
′ is positive

when T = T2 = t′ + α′ + c′1 + 2 = T1 + α′ − α + 1
2
(d− c1 + 1

2
c′1)− d.

The derivative of Q(T2) = P ′(T2) + T2 with respect to α′ is:

3T 2
2 − 6T2(2α

′ + c′1) + 3(2α′ + c′1)
2 = 3(T2 − 2α′ − c′1)2

and so Q(T2) always increases as a function of α′. Moreover, the coefficient
of c′2 in Q(T ) is −3(2t+ 4− d+ c1), which is negative by lemma 2.3.

So we have Q(T2) ≥ R where R is obtained by replacing α′ with α −
1
2
(d− c1 + c′1) (recall that α− 1

2
(d− c1 + c′1) ≤ α′ ≤ d+α− 1

2
(d− c1 + c′1) by

lemma 2.1) and c′2 with c2− d(T1 + 2−α− d)− 1
4
(d− c1)2− 1

4
c′1 (see lemma

2.1) in Q(T2).
Thus

P ′(T2) = Q(T2)− T2 ≥ R− T1 =

P (T1) + 3d(t+ 4− d+
1

2
c1)

2 + d(3c2 − d2 + 6d+
3

4
c1 − 12)

is positive, because of the hypothesis on T1 and lemma 2.3.

3 Applications to Curves and Examples

Let C be a locally Cohen-Macaulay generic complete intersection curve and
e′C be the largest integer such that ωC(−e′C) has a section which generates
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the sheaf almost everywhere. This is not to be confused with eC , the largest
integer such that ωC(−eC) has a nonzero section, however note that e′ ≤ e
and they are equal when, for example, C is an integral curve. By Serre’s
correspondence (see [H1], theorem 4.1) C is the scheme of zeros of a non-
vanishing section of a reflexive sheaf F with first Chern class c1 = 4 + e′C .
Normalizing F and applying theorem 2.5 we obtain the following result on
the minimal degree of a surface containing C.

Theorem 3.1 Let C be a locally Cohen-Macaulay generic complete inter-
section curve on P3 of degree d and assume that the minimal degree s0(C)
of a surface containing C satisfies s0(C) ≥ e′C + 4. Then s0(C) is less than
or equal to 1+ the largest root of the polynomial

p(z) =

(
z + 3

3

)
− d(z − e′C

2
).

Proof. A section of ωC(−e′C) which generates this sheaf almost everywhere
gives rise to a rank two reflexive sheaf E with Chern classes c1 = c1(E) =
e′C + 4, c2 = d, c3 = 2pa(C) − 2 + d(4 − c1), a nonzero section s ∈ H0E and
an exact sequence

0→ O(−c1)→ E(−c1)→ IC → 0.

The hypothesis e′C+4 ≤ s0(C) shows that C is a minimal curve for E . Writing
E = F(αF), where F is the normalization of E , we see from the exact sequence
that s0(C) = βF+αF+c1(F). By theorem 2.5, this last quantity is≤ bT0c−1,
where T0 is the largest root of P (T ). Equivalently, s0(C) ≤ 1+ the largest
root of P (z + 2). However, interpreting this as an Euler characteristic gives
P (z+2) = 6χF/O(−α)(z−α−c1(F))−3c3 = 6χE(−c1)/O(−c1)(z)−3c3 =
6χIC(z) − 3c3. Computing this last polynomialand dividing by 6 gives the
theorem statement.

Remark 3.2 In the case s0(C) < e′C+4, C is the scheme of zeros of a section
of F(n) for n ≥ β and the exact sequence gives that s0(C) = αF + n + c1.
In this case bounds on s0(C) can be found in [RV1], propositions 5.3 and 5.8
and [RV2], theorem 4.3.

Remark 3.3 In the special case e′C = eC (e.g. C integral), theorem 3.1 can
be easily proven by looking at the Euler characteristic of IC (in fact, one gets
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a slightly stronger bound). Many examples of such integral curves are given
in the paper [LR], where it is shown that a general high degree embedding of
a smooth curve into P3 satisfies e + 4 < s (here this condition implies both
that C is a minimal curve section of a rank two reflexive sheaf and that C is
minimal in its even liaison class).

On the other hand, this condition does not hold for minimal curve sec-
tions of a (stable) rank two reflexive sheaf E with fixed Chern classes and
many choices of the spectrum (see [H1], §7 for the definition). Indeed, eC is
determined by the spectrum of E , which can vary linearly with c2, while e′C
is determined by αE , which can vary as a square root of c2 by theorem 1.1:
thus for most spectra we expect that e′C < eC . For several examples of this
behavior when α = 1, see any of the examples constructed by Hartshorne
and Rao in [HR], §2 with spectrum 6= {0c2}.

Example 3.4 As an example in which e′ << e, let C be the disjoint union
of a plane curve of degree d and d lines in general position. Then we see
that e′C = −2 while eC = d− 3. A general section ξ ∈ H0ωC(−2) generates
the sheaf at all but d2 − 5d points and exhibits C as a minimal curve for a
stable rank 2 reflexive sheaf on P3 with c1 = 2, c2 = 2d and c3 = d2 − 5d.
Theorem 3.1 predicts that s0(C) ≤ 1

2
(−3 +

√
25 + 48d) (the polynomial p(z)

has z + 1 as a factor). On the other hand, the d lines in general position are
of maximal rank ([HH], theorem 0.1), and from this we see that the actual
value is s0(C) = 1

2
(−3 +

√
25 + 24d). For example, if d = 100, then the

theorem predicts that s0(C) ≤ 33. The true value is s0(C) = 23.

Example 3.5 Let L be the skew union of r ≥ 3 smooth complete inter-
sections of the same type (m,m) and assume that no surface of degree 2m
contains L. In this case ωL

∼= OL(2m − 4), e′L = eL = 2m − 4 and the unit
section of ωL(4 − 2m) generates this sheaf. Thus L is a section of a stable
rank two vector bundle E(m) on P3 with c1 = 0 and c2 = (r − 1)m2. The
hypothesis s0(L) > 2m shows that L is in fact a minimal section of E .

Of course L lies on a surface of degree rm, but theorem 3.1 shows that L
lies on surfaces of degree ≤ 1+ the largest root of the polynomial

p(z) =

(
z + 3

3

)
− rm2(z −m+ 2).

This is in general a much better bound, for example when r = m = 10 we
find that s0(L) ≤ 70 instead of 100. When m = 1 and L is a union of lines in
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general position, then L is of maximal rank by the main theorem of [HH], and
hence the bound given above is sharp. If we knew that the general union of
r complete intersections of type (m,m) was of maximal rank, then we would
obtain sharpness in theorem 2.5 for some mid-range values of α

Note that counting the surfaces of degree z containing zm2 + 1 points of
each irreducible component of L does not yield a better bound: This estimate
would show that s0(L) ≤ 1+ the last root of

q(z) =

(
z + 3

3

)
− r(zm2 + 1).

However it is easily checked that q(z) > p(z) for all m > 1 (for m = 1 we
have p(z) = q(z). When r = m = 10 this estimate shows that s0(L) ≤ 75.

Example 3.6 For fixed c1, c2 and α, Hartshorne’s theorem and the definition

of stability give that 0 < α ≤
√

3c2 + 1 + 3
4
c1−1− 1

2
c1. The sharpness of the

bound given in theorem 2.5 has already been shown for the extreme cases

α = 1 and α =
√

3c2 + 1 + 3
4
c1 − 1 − 1

2
c1 (see [RV1] and [RV2]: in the case

α = 1, it can be shown that the bound of theorem 2.5 and the bound in
[RV2] agree). In this example we show that for c1 = 0, c2 > 4 and α = 2 the
bound of theorem 2.5 is sharp (when c2 ≤ 3, this already follows from the
cases mentioned above).

For c2 > 4, let C be a generic elliptic curve of degree δ = c2 + 2c1 + 4.
By the main theorem of [BE], C has maximal rank. Since it is evident
that h1OC(l) = 0 for l > 0, the maximal rank condition implies that both
h1(IC(l)) and h0(IC(l)) are determined by χ(IC(l)) for l > 1 (since one of
the two is zero). In particular, h0(IC(l)) becomes positive exactly when the
Euler characteristic of IC becomes positive for good.

Now we use the nowhere vanishing section 1 ∈ OC to define a rank two
bundle E with corresponding exact sequence

0→ OP3(−4)→ E(−2)→ IC → 0.

The cubic polynomial of theorem 4.1 is precisely 6 times

χ(E(t− 2)/OP3(t− 4))

which from the exact sequence is the same as χ(IC(t)). The same sequence
(which is exact on global sections for every twist) shows that the second sec-
tion of E occurs precisely when the cubic polynomial of theorem 4.1 becomes
positive for good.
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Question 3.7 While the above example shows that theorem 2.5 is sharp
when c1 = 0 and α = 2, we do not know about sharpness for when 2 < α <

b
√

3c2 + 1 + 3
4
c1 − 1− 1

2
c1c. In fact, it is not immediate that every value of

α is possible: Given c1 = −1 or 0 and c2 > 0, does there exist a (stable) rank
two reflexive sheaf achieving each value of α allowed by theorem 1.1?

References

[BE] E. Ballico and Ph. Ellia, The maximal rank conjecture for non-
special curves in P3, Invent. math. 79 (1985) 541-555.

[CV] L. Chiantini and P. Valabrega, Subcanonical curves and complete
intersections in projective 3-space, Ann. Mat. Pura Appl. 136
(1984) 309-330.

[GRV] A. Geramita, M. Roggero and P. Valabrega, Subcanonical curves
with the same postulation as Q skew complete intersections in pro-
jective 3-space, Istituto Lombardo (Rend. Sc.) A 123 (1989) 111-
121.

[H1] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980)
121-176.

[H2] R. Hartshorne, Stable reflexive sheaves II, Invent. Math. 66 (1982)
165-190.

[HH] R. Hartshorne and A. Hirschowitz, Droites en position générale dans
l’espace projectif, In “Algebraic Geometry, Proceedings (La Rabida
1981)”, Lecture Notes in Mathematics 961, Springer-Verlag 1982,
169-188.

[HR] R. Hartshorne and A. P. Rao, Spectra and monads of stable bundles,
J. Math. Kyoto Univ. 31-3 (1991) 789-806.

[LR] R. Lazarsfeld and A. P. Rao, Linkage of general curves of large
degree, in “Algebraic Geometry - Open Problems (Ravello 1982)”,
Lecture Notes in Mathematics 997, Springer-Verlag 1983, 267-289.

[RV1] M. Roggero and P. Valabrega, On the second section of a rank 2
reflexive sheaf on P3, Journal of algebra 180 (1996) 67-86.

10



[RV2] M. Roggero and P. Valabrega, On the Smallest Degree of a Surface
Containing a Space Curve, Boll. UMI (8) 1-B (1998) 123-138.

11


