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Let Hd,g denote the Hilbert scheme of locally Cohen-Macaulay curves in

P3. For any d > 4 and g ≤
(
d−3
2

)
, Hd,g has two well-understood irreducible

families: There is a component E ⊂ Hd,g corresponding to extremal curves
(see [5]; these are the curves with maximal Rao function) and S, the family
of subextremal curves (see [7]; these have the next largest Rao function). In
this short note we show that S ∩ E 6= ∅ in Hd,g by constructing an explicit
specialization (Prop. 1). Our construction also works for ACM curves of

genus g =
(
d−3
2

)
+ 1 (Remark 2) and hence Hd,g is connected for g >

(
d−3
2

)
(Corollary 3).

Proposition 1 For each d ≥ 4 and g ≤
(
d−3
2

)
there exist extremal curves in

Hd,g which lie in the closure of the family of subextremal curves.

Proof: Fixing g as in the statement, let (x, yd−2) be the ideal of a planar
multiple line of degree d − 2 with support the line L given by {x = y = 0}.
We define the map

(x, yd−2)
φ→ SL(−1)

by x 7→ 1, yd−2 7→ zd−3. This map is surjective and the kernel

IV = (x2, xy, yd−1, xzd−3 − yd−2) = (x2, xy, xzd−3 − yd−2)

is the total ideal of an ACM curve V of degree d − 1 and arithmetic genus(
d−3
2

)
supported on L.

1



Now we construct a multiplicity d-line with support L as follows. We

define the map IV
ψ→ SL(b) by x2 7→ 0, xy 7→ zb+2, xzd−3−yd−2 7→ wb+d−2,

where b =
(
d−3
2

)
− 1− g (it is easy to check that the kernel of the surjection

S(−d+ 2)⊕S(−2)2 → IV is S(−d+ 1)⊕S(−3) and maps to zero under ψ).
Although ψ is not surjective (unless b = −2; see Remark 2), its sheafification
is. The kernel

IW = (x2, xy2, yd−1 − xyzd−3, xywb+d−2 − zb+2(yd−2 − xzd−3)).

is the total ideal of a multiple d-line W of genus g as we can see from the
exact sequence

0→ IW → IV → OL(b)→ 0.

This sequence further shows that H1
∗ (IW ) ∼= S/(x, y, zb+2, wb+d−2)(b) and

hence the Rao function achieves the upper bound given in ([7], Thm. 2.11):
thus W is a subextremal curve.

Now we deform W by considering the ideal

It = (x2, xy2, tyd−1 − xyzd−3, xywb+d−2 − tzb+2(tyd−2 − xzd−3))

parametrized by t ∈ A1. Flattening over A1, we add to this ideal polynomials
p such that pt ∈ It (see [3], III, Example 9.8.4). If A,B,C are the last three
generators appearing in It, we add

D = (wb+d−2B + zd−3C)/t = wb+d−2yd−1 − zb+d−1(tyd−2 − xzd−3)

and
E = (zd−3A+ yB)/t = yd.

Letting t −→ 0 we obtain the limit ideal

I0 = (x2, xy2, xyzd−3, xywb+d−2, yd, wb+d−2yd−1 − z2d+b−4x).

The saturation I0 contains (x2, xy, yd, wb+d−2yd−1 − z2d+b−4x), which is the
saturated ideal of an extremal curve of degree d and genus g ([5], Prop. 0.6),
completing the proof.

Remark 2 The deformation used in the proof above works if we take b = −2
(i.e. g =

(
d−3
2

)
+ 1), but in this case the map IV → SL(b) is surjective and

henceH1
∗ (IW ) = 0. ThusW is an ACM curve and we have produced extremal

curves in the closure of the ACM curves of genus g =
(
d−3
2

)
+ 1.
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Corollary 3 The Hilbert scheme Hd,g of locally Cohen-Macaulay curves in

P3 is connected for d ≥ 4 and g >
(
d−3
2

)
.

Proof: For g >
(
d−3
2

)
+ 1 this is easy because Hd,g is irreducible (the curves

are either extremal or ACM; see [7] Lemma 2.5) or empty. In the remaining

case g =
(
d−3
2

)
+ 1 there are two irreducible components given by the ACM

curves and the extremal curves. By Remark 2, we conclude that Hd,g is
connected.

Remark 4 In his thesis [1], Aı̈t-Amrane proves Proposition 1 above using
the theory of triades of families of curves [4], although he doesn’t recover the
extension of Remark 2. His main result is that Hd,g is connected for d ≥
4, g =

(
d−3
2

)
. This case is more complicated, as there is another irreducible

component to deal with.
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