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Let L be a tensor product of two very ample line bundles 
on the smooth projective complex threefold X. Under the 
hypothesis that H0(X, KX(L)) �= 0, we show that the 
restriction map r : PicX → PicY is an isomorphism for 
very general Y in the linear system |L|. For such L this 
result recovers the Noether-Lefschetz theorem of Moishezon, 
who extended the original topological and Hodge-theoretic 
arguments of Lefschetz. We give a degeneration argument 
which is almost completely algebraic in nature.
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Introduction

Lefschetz [22] achieved a high point in algebraic geometry in the 1920s when he proved 
M. Noether’s classic statement [26] from the 1880s: For very general surfaces S ⊂ P 3

C

of degree d ≥ 4, the restriction map r : PicP 3
C → PicS is an isomorphism. This began 

Noether-Lefschetz theory [4], which seeks to determine the line bundles L on varieties 
X for which the restriction r : PicX → PicY is an isomorphism for general Y in the 
linear system |L| = PH0(X, L). The results are very strong if dimX > 3, when the 
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Grothendieck-Lefschetz theorem asserts that if X is smooth and Y ⊂ X is any effective 
ample divisor, then r : PicX → PicY is an isomorphism [13,14]. Recent results include 
variations for class groups of normal varieties [27] and linear systems with base locus [5].

The problem is more subtle when dimX = 3. One must take Y ∈ |L| to be very 
general, avoiding a countable union of proper subvarieties Vi ⊂ |L| called the Noether-
Lefschetz components, which are dense in the Euclidean topology [6,8]; moreover, the 
conclusion fails without additional positivity assumptions on L. Since 1980 there have 
been many variations on the theorem for smooth complex threefolds X using a variety of 
methods: Carlson, Green, Griffiths and Harris [7] used infinitesimal variations of Hodge 
structures; Green [10,11] used Koszul cohomology to give sharp lower bounds on the 
codimension of the Noether-Lefschetz components, which were subsequently refined by 
Voisin [30,31]; Ein [9] computed Picard groups of general dependency loci of sections of 
vector bundles; Joshi [19] used an infinitesimal approach due to Mohan Kumar and Srini-
vas involving formal completions. These results all require that K⊗L is generated by its 
global sections or that the multiplication map H0(K ⊗L) ⊗H0(L) → H0(K ⊗L ⊗L) is 
surjective. Our main theorem requires only that H0(K ⊗L) �= 0 and that L decomposes 
as a tensor product:

Theorem 1. Let X be a smooth projective complex threefold. If A, B ∈ PicX are very 
ample and H0(KX(A ⊗B)) �= 0, then r : PicX ∼−→ PicY for very general Y ∈ |A ⊗B|.

The most important special case is the following.

Corollary 2. Let X ⊂ Pn
C be a smooth projective threefold. If d > 1 and H0(KX(d)) �= 0, 

then the restriction r : PicX → PicY is an isomorphism for very general Y ∈ |OX(d)|.

Remark. For L = A ⊗B in Theorem 1, the non-vanishing H0(KX(L)) �= 0 is equivalent 
to h0(KX) < h0(KX(L)) (see Lemma 2.1), but in view of the exact sequence

0 → H0(KX) → H0(KX(L)) → H0(KY ) → H1(KX) → 0

arising from Kodaira vanishing, the condition that h0(KX) < h0(KX(L)) is equivalent 
to h0(KY ) > h1(KX), which is equivalent by Serre duality to the Hodge condition 
h2,0(Y ) > h2,0(X). This shows the connection to Moishezon’s theorem [24, 7.5], which 
says that for L very ample on X, the restriction r : PicX → PicY is an isomorphism 
for very general Y ∈ |L| if and only if (a) b2(Y ) = b2(X) or (b) h2,0(Y ) > h2,0(X). 
When X = P 3 and deg Y = d, (b) recovers the classical theorem for d ≥ 4, while 
(a) picks up the missing case d = 1. Since b2(Y ) > b2(X) for sufficiently ample L
[4, 1.10], the more important case is (b), which Moishezon achieved by extending the 
topological and Hodge-theoretic ideas of Lefschetz. Voisin takes a similar path, assuming 
H2

v (Y, C) ∩H2,0(Y ) �= 0, [32, 3.33], but this is equivalent to h2,0(Y ) > h2,0(X) [4, 1.11]. 
Thus Theorem 1 recovers the theorem of Moishezon-Voisin for line bundles L that are 
decomposable as a tensor product of very ample line bundles.
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Our proof of Theorem 1 follows the outline of the argument for X = P 3 by Griffiths 
and Harris [12], who carefully studied the degeneration of a degree d surface Y to a 
reducible surface T ∪ P in which deg T = d − 1 and P is a plane. The general case 
is complicated by the lack of handy planes P ⊂ X for which PicX → PicP is an 
isomorphism and also by the possibility that Pic0 X �= 0. The key observation is that for 
a reducible union P ∪T with P ∈ |A|, T ∈ |B| and D = P ∩T smooth, the non-vanishing 
H0(KX(A ⊗B)) �= 0 implies dim Pic0 D > dim Pic0 P and dim Pic0 D > dim Pic0 T . This 
difference in dimension gives enough leverage to calculate the Picard group of the central 
fiber of a desingularization of a linear deformation from Y to P∪T , from which we deduce 
the isomorphism PicX ∼= PicY for very general Y . We sketch the proof in three steps, 
which correspond to the three sections of the body of the paper.

1. The Noether-Lefschetz locus For A, B ∈ PicX as in Theorem 1, set L = A ⊗B and 
let Y ⊂ X × |L| → |L| be the universal family of surfaces. For any morphism Z → |L|, 
let YZ ⊂ X × Z → Z be the pullback to Z and, for the sake of lightening notation, 
denote by HilbZ the relative Hilbert scheme HilbYZ/Z of curves for the family YZ → Z

of surfaces and hZ : HilbZ → Z the structural map, which is locally projective over Z.
For any fixed embedding

j : X ↪→ PN , (1)

the Hilbert scheme decomposes into a disjoint union Hilb|L| =
∐

Hilbϕ
|L| indexed by 

the Hilbert polynomial ϕ ∈ Q[z] with respect to Embedding (1) and for each ϕ carries 
a universal flat family of curves

Cϕ ⊂ YHilbϕ
|L|

⊂ X × Hilbϕ
|L|

Hilbϕ
|L|

(2)

The subscheme Divϕ
|L| ⊂ Hilbϕ

|L| corresponding to pairs (C, Y ) with C Cartier on Y
is open (when Y is smooth this means C has no isolated or embedded points) and we 
prove that over the open locus U ⊂ |L| of smooth surfaces Y for which the restriction 
r : Pic0 X → Pic0 Y is an isomorphism, Divϕ

U ⊂ Hilbϕ
U is also closed. It follows that the 

locus Wϕ ⊂ Divϕ
U of pairs (C, Y ) with OY (C) not in the image of PicX → PicY is closed 

and hence has finitely many irreducible components Wϕ
i , whose images Σϕ

i = hU (Wϕ
i ) ⊂

U are closed subvarieties. There are countably many choices of Hilbert polynomial ϕ ∈
Q[z], so there are countably many Noether-Lefschetz components.

2. Degeneration Consider a linear pencil � ∼= P 1 inside of |A ⊗ B| passing through a 
smooth surface S and having reducible central fiber P ∪ T at 0 = u ∈ P 1 for generally 
chosen P ∈ |A|, T ∈ |B| so that D = P ∩ T is smooth. That is, if P, T, S are defined 
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by respective sections fP ∈ H0(A), fT ∈ H0(B), fS ∈ H0(A ⊗ B), the total family 
M ⊂ X×P 1 of the pencil has equation (in an affine coordinate t about 0) tfS−fP fT = 0. 
This local equation shows that M is singular at the points S ∩P ∩T in the central fiber. 
We resolve them with the family

M̃ ⊂ X̃ × P 1 (3)

of strict transforms in the blow-up X̃ → X at S ∩T . Family (3) agrees with the original 
family for t �= 0, but the new central fiber is P̃ ∪ T , where P̃ → P is the blow-up at the 
points S ∩ T ∩ P . For very general S, T, P we prove that

Pic M̃0 ∼= PicX ⊕ Z (4)

with the second summand generated by P̃ |M̃0
. The key point is an argument using the 

relative Picard scheme to show that the natural diagram

PicX PicP

PicT PicD

(5)

is Cartesian.

3. Properness To show that any Noether-Lefschetz component hU(W ) = Σ ⊂ U is a 
proper closed set, we show that Σ ∩P 1 is a proper closed subset of P 1, where P 1 ⊂ |A ⊗B|
is a pencil determined by surfaces S, T, P as above. The idea is that if the projection 
W → T is dominant, then there is a curve f : E ⊂ W dominating P 1. After we normalize 
to make E smooth, the universal family of curves associated to E corresponds to a family 
of line bundles which at a point p ∈ f−1(0) lies in the image of PicX modulo the vertical 
component P̃ |M̃0

, and therefore the nearby line bundles also lie in the image of PicX. 
This is complicated by the possibility that f : E → P 1 may be ramified over 0 ∈ P 1; 
resolving the resulting singularities creates more vertical components in the Picard group, 
but the outcome remains the same.

We work over k = C throughout, but we only use the complex hypothesis for one mon-
odromy argument and the characteristic-zero hypothesis to apply Kawamata-Viehweg 
vanishing and results on the relative Picard scheme [21]. Except for the monodromy 
argument, our proof is algebraic.

Ongoing work Before proceeding with our proof of Theorem 1, we remark that we 
expect the method outlined here applies more broadly to give a result in the spirit of the 
theorem of Ravindra and Srinivas [28], but with slightly different (and incomparable) 
hypotheses:
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Conjecture 3. Let X be a complex projective normal threefold, f : X → Pn a finite 
morphism given by a complete linear system H0(L) (so that L = f∗O(1)), and assume 
that L can be expressed as A ⊗B where A and B define birational maps onto their images 
in projective space. If H0(KX(L)) �= 0, then the general hyperplane section Y of the 
image of X under f is normal, and for very general such Y the restriction ClX → ClY
is an isomorphism.

The main stumbling block is proving that the analog to Diagram (5) is Cartesian, 
since in general class groups do not have the same nice functorial properties as Picard 
groups.

1. The Noether-Lefschetz locus

Fix a smooth projective variety X ⊂ PN and L ∈ PicX. For a family U ⊂ |L| of 
smooth divisors, the Noether-Lefschetz locus is the set NL(U) ⊂ U of divisors Y ∈ U for 
which the restriction PicX → PicY is not surjective. Equivalently, Y ∈ NL(U) if there 
is an effective Cartier divisor D ⊂ Y for which OY (D) is not in the image of PicX. We 
will use Hilbert schemes to show that within the open set U ⊂ |L| consisting of smooth 
Y for which Pic0 X → Pic0 Y is an isomorphism, NL(U) is a countable union of closed 
subvarieties of U .

Recall that for a morphism Z → |L| we denote by HilbZ the relative Hilbert scheme 
for the associated flat family YZ → Z. It is well known that HilbZ decomposes as the 
disjoint union of the Hilbϕ

Z , where for each numerical polynomial ϕ ∈ Q[t],

Hilbϕ
Z

= {(D,Y ) : Y ∈ Z and D ⊂ Y is a closed subscheme with Hilbert polynomial ϕ}.

Each Hilbϕ
Z is locally projective over Z, as proved by Grothendieck (Nitsure gives a 

complete exposition [25]), and contains the subset Divϕ
Z corresponding to pairs (D, Y )

with D Cartier on Y .

Proposition 1.1. Let U ⊂ |L| be a family of smooth hypersurfaces on X and fix a Hilbert 
polynomial ϕ. Then Divϕ

U ⊂ Hilbϕ
U is open and closed.

Proof. It is known that DivU ⊂ HilbU is open in general [21, 9.3.7]. If p ∈ Hilbϕ
U

lies in the closure of Divϕ
U , then there is an integral curve T ⊂ Hilbϕ

U with p ∈ T

and T ′ = T − {p} ⊂ Divϕ
U . Replace T by its normalization and remove all but one 

preimage of p; then base extension gives flat families D ⊂ Y ⊂ X×T
π−→ T with Dt ⊂ Yt

Cartier for t ∈ T ′, hence DT ′ ⊂ YT ′ is an effective Cartier divisor [21, 9.3.4]. The closure 
E = DT ′ ⊂ Y is an effective Weil divisor on Y , hence is Cartier because Y is smooth. 
Since D is flat over T , no components map to p and therefore D = DT ′ = E. It follows 
that Dp = Ep ⊂ Yp is Cartier [21, 9.3.4], hence p ∈ Divϕ

U . �
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Example 1.2. Proposition 1.1 fails without the smoothness hypothesis. For example, the 
family of twisted cubic curves (t2 − 1, t3 − t, at) in A3 parametrized by a ∈ A1 lies on 
the family of surfaces xz − ay; the flat limit is a nodal cubic curve in the xy-plane with 
an embedded point [15, III, 9.8.4], which is not Cartier on the limit surface xz, since it 
is not Cohen-Macaulay at the origin and thus not a local complete intersection.

Proposition 1.3. Let X be a smooth projective variety and Z ⊂ X × U → U be a flat 
family of closed subschemes with reduced connected fibers Zu such that the restriction 
maps r : Pic0 X → Pic0 Zu are isomorphisms for all u ∈ U . Fix L ∈ PicZ. Then

(a) The set AL = {u ∈ U : Lu ∈ Pic0 Zu} ⊂ U is open in U .
(b) If a subgroup G ⊂ PicZ contains f∗(Pic0 X) under f : Z → X × U

π1−−→ X, then 
GL = {u ∈ U : Lu ∈ Gu} is open.

Proof. The group scheme Pic0 X is smooth since we are working over C. In particular, 
the Pic0 Zu are smooth of constant dimension, and since the fibers Zu are reduced and 
connected the relative Picard scheme PicZ/U exists and represents the relative Picard 
functor in the étale topology [21, 9.4.18.1] and hence also in the fppf topology [21, 9.4.1]. 
It follows that PicZ/U contains Pic0

Z/U as an open group subscheme of finite type whose 
fibers are the Pic0 Zu [21, 9.5.20]. The invertible sheaf L ∈ PicZ defines a continuous 
section σ : u → PicZ/U by u �→ Lu and AL = σ−1(Pic0

Z/U ), proving part (a). For part 
(b), observe that GL =

⋃
M∈G AL−M is a union of open sets. �

For U ⊂ |L| a family of smooth hypersurfaces and ϕ ∈ Q[z], the universal family

Dϕ ⊂ Yϕ ⊂ X × Divϕ
U

Divϕ
U

(6)

gives rise to the invertible sheaf OYϕ(Dϕ) ∈ PicYϕ defined on the fibers by OYt
(Dt) via 

the Abel map [21, 9.4.6]. At the level of sets we can write

NL(U) =
⋃

ϕ∈Q[z]

hU (Wϕ) (7)

where hU : HilbU → U is the structural map and

Wϕ = {(D,Y ) ∈ Divϕ
U : OY (D) is not in the image of PicX → PicY }.

Proposition 1.4. Let U ⊂ |L| be a family of smooth hypersurfaces Yt ⊂ X for which the 
restrictions Pic0 X → Pic0 Yt are isomorphisms. Then hU (Wϕ) ⊂ U is closed for each 
ϕ ∈ Q[z], hence NL(U) is a countable union of closed subvarieties Σi ⊂ U .
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Proof. Fix a polynomial ϕ, and let G be the image of PicX in PicYϕ. Applying Propo-
sition 1.3 with the line bundle L = OYϕ(D) on Yϕ shows that the set

{t ∈ Divϕ
U : OYt

(Dt) = M |Yt
for some M ∈ PicX}

is open in Divϕ
U , so its complement Wϕ ⊂ Divϕ

U is closed in Divϕ
U , hence closed in 

Hilbϕ
U by Proposition 1.1. Since Hilbϕ

U is projective over U , the image hU (Wϕ) is closed 
and thus a finite union of irreducible closed sets. Taking the union over the countably 
many choices of ϕ ∈ Q[z] expresses NL(U) as a countable union of irreducible closed 
subvarieties of U . �
Remark 1.5. The components of hU (Wϕ) need not be proper subsets of U in general. For 
example, if X = P 3 and L = O(2), then PicP 3 → PicQ is not surjective for any smooth 
Q ∈ |L|. The point is to show that these sets are proper in the setting of Theorem 1.

2. Degeneration

We establish the claims made in Subsection 2 of the introduction. In the setting 
of Theorem 1, we show in Theorem 2.8 that for very general P ∈ |A|, T ∈ |B| with 
D = P ∩ T , Diagram (5) is Cartesian with injective restriction maps. In Corollary 2.13
we show that the central fiber in Family (3) has Picard group given in Isomorphism (4).

2.1. Consequences of the hypothesis H0(KX(A ⊗B)) �= 0

Here we show what the condition H0(KX(A ⊗ B)) �= 0 in Theorem 1 delivers for a 
smooth surface S ∈ |A ⊗B| degenerating to a reducible surface T ∪ P with T ∈ |B| and 
P ∈ |A|.

Lemma 2.1. Let L, M be line bundles on a variety X of dimension greater than 0 such 
that h0(M) ≥ 2 and h0(L ⊗M) �= 0. Then h0(X, L) < h0(X, L ⊗M).

Proof. Since X is irreducible, the pairing H0(L) × H0(M) → H0(L ⊗ M) is non-
degenerate, so h0(L ⊗M) ≥ h0(L) + h0(M) − 1 ≥ h0(L) + 1 [16, 5.1]. �
Lemma 2.2. Let X be a smooth complex threefold, A and B base-point free, big, and nef 
line bundles on X, P ∈ |A| and T ∈ |B| smooth and intersecting in a smooth connected 
curve D = P ∩ T . Then

H0(KP ⊗B) �= 0 ⇐⇒ H0(KX(A⊗B)) �= 0 ⇐⇒ H0(KT ⊗A) �= 0.

Proof. For P and T defined by nonzero sections fP ∈ H0(A) and fT ∈ H0(B), adjunc-
tion gives the commutative diagram
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0 0 0
⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−→ KX
·fP−−−−→ KX ⊗A −−−−→ KP −−−−→ 0

⏐⏐�·fT
⏐⏐�·fT

⏐⏐�
0 −−−−→ KX ⊗B

·fP−−−−→ KX ⊗A⊗B −−−−→ KP ⊗B −−−−→ 0
⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−→ KT −−−−→ KT ⊗A −−−−→ KD −−−−→ 0
⏐⏐�

⏐⏐�
⏐⏐�

0 0 0

(8)

with the middle column and middle row both exact on global sections due to Kawamata-
Viehweg vanishing [29]. Now apply Lemma 2.1, noting that h0(A) and h0(B) are both 
≥ 2, since each line bundle defines a non-constant morphism to projective space. �
Remark 2.3. For our applications here we could have proved Lemma 2.2 with A, B very 
ample via the Kodaira vanishing theorem, but we have future applications in mind with 
the more general statement.

Example 2.4. Both possibilities in Lemma 2.2 are illustrated by surfaces in X = P 3.

(a) A smooth quartic Y ⊂ P 3 degenerates to the union of a smooth cubic T and a plane 
P intersecting in a smooth elliptic curve D = T ∩ P . Here H0(KP3(4)) �= 0 and 
H0(KP (3)) �= 0 and H0(KT (1)) �= 0.

(b) A smooth cubic Y ⊂ P 3 degenerates to a union of a quadric T and plane P meeting 
in a conic D = T ∩ P and we have the vanishings h0(KP3(3)) = h0(KT (1)) =
h0(KP (2)) = 0.

Remark 2.5. To interpret the condition in Lemma 2.2, observe that Kawamata-Viehweg 
vanishing applies to the nef and big line bundles A and A ⊗ B, and the long exact 
sequence coming from the middle row of Diagram (8) shows that H1(KP ⊗ B) = 0, 
giving the exact sequence

0 → H0(KP ) → H0(KP ⊗B) → H0(KD) → H1(KP ) → 0

coming from the right column. Then

H0(KP ⊗B) �= 0 ⇐⇒ h1(OD) > h1(OP )
⇐⇒ h0(KD) > h1(KP )
⇐⇒ dim Pic0D > dim Pic0P,
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where the first equivalence is by Lemma 2.1, the second by Serre duality, and the third 
by the fact that H1(OV ) is isomorphic to the tangent space at the origin of Pic0 V for 
any variety V [21, 9.5.11].

2.2. A Cartesian diagram

For the remainder of this section, assume that A and B are very ample on a smooth 
complex threefold X as in Theorem 1. For general surfaces P ∈ |A| and T ∈ |B| on X, the 
intersection curve D = P ∩T is smooth and connected. Assuming H0(KX(A ⊗B)) �= 0, 
we will show that Diagram (5) is Cartesian with injective restriction maps for very 
general choices of P and T .

Proposition 2.6. Let S ⊂ Pn be a smooth projective surface satisfying H0(KS(1)) �= 0.

(a) The general pencil in |OS(1)| consists of irreducible curves, and if L ∈ PicS satisfies 
L|D ∼= OD for general D in such a pencil, then L ∼= OS.

(b) For nonsingular (connected) D ∈ |OS(1)|, the restriction Pic0 S → Pic0 D on Picard 
varieties is a closed immersion, identifying Pic0 S with a proper closed subvariety of 
Pic0 D.

(c) For very general D ∈ |OS(1)|, the restriction r : PicS → PicD is injective.

Proof. First note that H0(KS(1)) �= 0 is equivalent to h1(OD) > h1(OS) for D ∈ |OS(1)|
by Remark 2.5. This implies that S is not a Veronese surface embedded by the linear 
system of conics on P 2 nor its generic (smooth) projection in P 4, because then D is 
rational and h1(OD) = 0; neither is S ruled by lines, since then S is ruled over a 
general hyperplane section D and PicS ∼= PicD ⊕ Z, but then h1(OS) = dim Pic0 S =
dim Pic0 D = h1(OD). Therefore the reducible sections in |OS(1)| have codimension ≥ 2
[23, II.2.4] so that a general pencil P 1 ∼= � ⊂ |OS(1)| consists entirely of integral curves, 
and hence part (a) holds by [23, II.2.3] or [3, Proof of 3.4 (a)].

The restriction map r : Pic0 S → Pic0 D is a homomorphism of smooth projective 
group schemes [21, 9.5.4 and 9.5.14]. The map H1(OS) → H1(OD) is injective by Kodaira 
vanishing, but this map is identified with the differential on Zariski tangent spaces at the 
origin [21, 9.5.11], so r is a closed immersion and the image is a proper closed subvariety 
by Remark 2.5 and [20, Lemma 3.11 and Rmk. 3.12]. This proves (b).

Part (c) is equivalent via diagram

0 −−−−→ Pic0 S −−−−→ PicS −−−−→ PicS/Pic0 S −−−−→ 0
∥∥∥

⏐⏐�r

⏐⏐�r

0 0

(9)
0 −−−−→ Pic S −−−−→ PicD −−−−→ PicD/Pic S −−−−→ 0
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to showing that r is injective for very general D ∈ |OS(1)|. Let U ⊂ |OS(1)| be the 
Zariski open locus of smooth curves with total family D ⊂ S ×U → U having fibers Du

for u ∈ U . Observe that for each L ∈ PicS, the subset

K(L) = {u ∈ U : L|Du
∈ Im Pic0S}

depends only on the image of L in the countable Néron-Severi group PicS/ Pic0 S =
NS(S) and that K(L) = U if L ∈ Pic0 S. To show that r is injective it suffices to prove 
that

L /∈ Pic0S ⇒ K(L) ⊂ U is a closed proper subset (10)

because then the union 
⋃
K(L) taken over 0 �= L ∈ NS(S) leaves plenty of curves D ∈ U

for which r is injective.
To see that K(L) ⊂ U is closed, fix L ∈ PicS. There is an identification of relative 

Picard schemes PicS/C × U ∼= PicS×U/U [21, Ex. 9.4.4], where PicS/C = PicS is the 
usual Picard group and the inclusion Pic0

S×U/U ⊂ PicS×U/U is naturally identified with 
Pic0 S × U ⊂ PicS × U . The restriction morphism PicS×U/U → PicD/U appears as r
after these identifications in diagram

Pic0 S × U PicS × U PicD/U

U U U

j r

p2 π
(11)

The composition r ◦ j is a homeomorphism onto a closed subset: It injects because it is a 
closed immersion on each fiber by part (b); the image is closed because Pic0 S → SpecC
is proper [21, 9.5.20], hence so is the base extension Pic0 S × U → U and therefore 
universally closed. Let σL be the section to p2 defined by σL(u) = (L, u). Then τL = r◦σL

is a section to π which is a homeomorphism onto a closed subset. Indeed, PicD/U is a 
disjoint union of open and closed quasi-projective subschemes PicϕD/U indexed by the 
Hilbert polynomial [21, 9.6.20]. Since τL(U) is irreducible, it lies in a fixed PicϕD/U , so 

τL is a section to a projection PN × U → U for some N ; such a section is a closed 
immersion [15, Exercise 4.8 (e)]. It follows that K(L) = τ−1

L (r(Pic0 S × U)) ⊂ U is 
closed.

Now assume K(L) = U , meaning that LDu
∈ Im Pic0 S for all u ∈ U ; it remains 

to show that L ∈ Pic0 S. Our strategy is to work over a pencil where the relative 
Picard scheme represents its functor to construct another constant section u �→ MDu

with M ∈ Pic0 S and use part (a) to argue that L = M . As in part (a), a general 
pencil � ⊂ |OS(1)| consists of irreducibles, let V = � ∩ U and base extend Diagram 
(11) by V ⊂ U . Since τL(V ) ⊂ r(j(Pic0 ×V )) lies in the image of the closed embedding 
r : Pic0 S × V ↪→ PicD/V , we obtain a section to Pic0 S × V → V , which we view as a 
section σ2 to PicS×V → V . By [21, 9.2.5 and 9.4.3] there is a line bundle M̃ ∈ Pic(S×V )
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which defines σ2. Viewing V ⊂ P 1 as a proper open subset we may write V ⊂ A1 and if 
V is obtained from A1 by removing m points, there is an exact sequence [15, II.6.5]

0 → Zm → Pic(S ×A1) → Pic(S × V ) → 0

but the pullback map PicS → Pic(S×A1) is an isomorphism and the image of Zm above 
is zero, so M̃ = p∗1M for some M ∈ PicS. Moreover, M ∈ Pic0 S because our section 
was in the image of Pic0 S × V , so we may safely call this section σM for M ∈ Pic0 S. 
By construction M |Du

∼= L|Du
for u ∈ V , hence L = M by part (a) and so L ∈ Pic0 S. 

This proves Statement (10) and hence part (c). �
Proposition 2.7. If H0(KX(A ⊗B)) �= 0, then both restriction maps PicT → PicD and 
PicP → PicD in Diagram (5) are injective for very general (P, T ) ∈ |A| × |B|.

Proof. Let W ⊂ |A| × |B| be the Zariski open locus of pairs (P, T ) where P, T and 
D = P ∩ T are smooth and connected. Let Q ⊂ W be the subset consisting of pairs 
(P, T ) for which there exists a nontrivial L ∈ PicT with L|D ∼= OD; we claim that Q is 
a countable union of proper subvarieties of W . Since A is very ample, L +mA ∼ C ⊂ T

is effective for some m > 0 so that each L ∈ PicT has the form L = OT (C)(−mA) for 
some m > 0 and C ⊂ T . We may therefore write Q =

⋃
m,ϕ Qϕ

m where Qϕ
m ⊆ Q is the 

subset of pairs (P, T ) for which there exists a curve C ⊂ T with Hilbert polynomial ϕ
with respect to A and m > 0 such that OT (C)(−mA) is nontrivial on T but has trivial 
restriction to D. Then Q is a countable union 

⋃
m,ϕ Qϕ

m. It then suffices to show that 
each Qϕ

m ⊂ W is a finite union of proper closed subvarieties of W .
To this end we fix m > 0 and ϕ ∈ Q[z]. Let T be the universal family of divisors 

on X corresponding to |B| and TW its pullback to W . Let Divϕ ⊂ Hilbϕ
TW /W denote 

the corresponding relative Hilbert scheme of Cartier divisors with Hilbert polynomial ϕ. 
Thus there is a morphism Divϕ → W and universal families of curves and surfaces

Dϕ, Cϕ ⊂ TDivϕ ⊂ X × Divϕ

Divϕ

(12)

A point in Divϕ corresponds to a triple (P, T, C) with C ⊂ T an effective Cartier 
divisor having Hilbert polynomial ϕ. The fibers over such a point in the respective 
families Dϕ, Cϕ ⊂ TDivϕ → Divϕ are simply D = P ∩ T, C, T . We claim that the subset 
V ⊂ Divϕ corresponding to triples (P, T, C) satisfying OT (C)(−mA) ⊗ OD

∼= OD is 
closed. Since D ∈ |OT (A)|, the degree d of the restriction OT (−C)(mA) ⊗OD ∈ PicD is 
the intersection number (mA −D) ·A on T and depends only on the leading coefficient 
of ϕ. If d �= 0, then OT (−C)(mA) ⊗ OD � OD and the corresponding V ⊂ Divϕ

is empty and hence closed. If d = 0, then OT (−C)(mA) ⊗ OD
∼= OD holds if and 

only if H0(OT (−C)(mA) ⊗OD) �= 0 [15, IV, 1.2]. The inclusion Cϕ ⊂ TDivϕ induces the 
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invertible sheaf ICϕ(mA) ∈ Pic TDivϕ , and restricting to the family Dϕ gives a line bundle 
ICϕ(mA) ⊗OD, which is flat over Divϕ because Dϕ is. The set of (P, T, C) ∈ Divϕ where 
H0(D, OT (−C)(mA) ⊗OD) �= 0 is closed by semicontinuity [15, III, 12.8], so again V is 
closed.

Let Vi be the irreducible components of V and consider the image Wi ⊂ W of Vi

under the composite map

Vi ⊂ Divϕ α−→ PicT /W → W

where α is the Abel map [21, 9.4.6]. Each Wi ⊂ W is closed because Vi ⊂ Hilbϕ
TW /W

is closed (Proposition 1.1) and Hilbϕ
TW /W → W is a projective morphism. The fact 

that Pic0
T /W is both open and closed in PicT /W [21, 9.5.20] leaves two possibilities. 

If α(Vi) ⊂ Pic0
T /W , then injectivity of the maps Pic0 T → Pic0 D (Proposition 2.6

(b)) shows that OT (−C)(m) = 0 for all (P, T, C) ∈ Vi, so Vi does not contribute to Qϕ
n. 

Otherwise α(Vi) lies in the complement of Pic0
T /W , in which case all corresponding tuples 

(P, T, C) satisfy OT (−C)(m) �= 0 in PicT , so that Wi ⊂ Qϕ
n; here Wi ⊂ W is proper; 

because for any fixed T there exist P with PicT → PicD injective by Proposition 2.6
(c). It follows that Qϕ

n is the finite union of such Wi and that S =
⋃

n,ϕ Qϕ
n ⊂ W is a 

countable union of proper subvarieties WB
j .

Similarly, there are proper closed subvarieties WA
j ⊂ W corresponding to pairs (P, T )

for which PicP → PicD is not injective. It follows that PicT → PicD and PicP →
PicD are both injective for all (T, P ) ∈ W avoiding 

⋃
WB

i ∪
⋃

WA
j . �

Theorem 2.8. Assume H0(KX(A ⊗ B) �= 0. For (P, T0) as in Proposition 2.7, there is 
T ∈ |B| such that Diagram (5) is Cartesian and all restriction maps inject.

Proof. The restrictions PicX → PicT and PicX → PicP in Diagram (5) are injective 
for Zariski general (P, T ) by a theorem of Ravindra and Srinivas [27], so all restrictions 
are injective for very general (P, T ) by Proposition 2.7. Selecting (P, T0) from this locus, 
the same holds of (P, T ) for very general T ∈ |B|. It remains to prove the Cartesian 
property: setting D = P ∩ T , we will show for very general T ∈ |B| that if L ∈ PicP
and M ∈ PicT satisfy L|D ∼= M |D, then there exists N ∈ PicX with N |P = L and 
N |T = M .

Let U ⊂ |B| be the Zariski open subset corresponding to T for which T and D = T ∩P
are both connected and smooth. The restrictions Pic0 X → Pic0 T and Pic0 X → Pic0 P

are isomorphisms by an argument similar to that in Proposition 2.6(b), because Kodaira 
vanishing gives isomorphisms H1(OX) → H1(OT ) and H1(OX) → H1(OP ).

Note that for L ∈ PicP , the subset

K(L) = {u ∈ U : L|Du
∈ Im PicTu} ⊂ U

depends only on the class of L in PicP/ PicX: Indeed, if L −L′ ∈ PicX and M ∈ PicT
satisfies M |Du

∼= LDu
, then N = M − (L −L′) ∈ PicT satisfies N |Du

∼= L′|Du
. Note also 



J. Brevik, S. Nollet / Journal of Algebra 544 (2020) 463–482 475
that PicP/ PicX is a quotient of the finitely generated group NS(P ) = PicP/ Pic0(P )
so is countable. We will show that for each L, K(L) is contained in a countable union 
of proper closed subvarieties of U ; allowing L to vary over a set of representatives for 
PicP/ PicX will show that the very general u ∈ U lies in no K(L), proving Theorem 2.8.

Let D ⊂ T ⊂ X × U → U be the family with fibers D ⊂ T and P = P × U ⊆ X × U

be the constant family. By [21, 9.4.8], all three relative Picard schemes exist and are 
sheaves in the étale topology; in fact PicP/U

∼= PicP/C × U = PicP × U by [21, 9.4.4]
and represents the relative Picard functor PicP/U by the Comparison Theorem [21, 9.2.5], 
since PicP × U → U has a constant section. Restriction maps induce the morphisms 
shown:

PicT /U
r1−−−−→ PicD/U

r2←−−−− PicP × U
⏐⏐�π

⏐⏐�
⏐⏐�

U U U

The constant section U → PicP ×U determined by L composes with r2 to give a section 
σ : U → PicD/U . As in the proof of Proposition 2.6(c), σ is a homeomorphism onto the 
closed set σ(U), hence F = r−1

1 (σ(U)) ⊂ PicT /U is closed. Notice that K(L) = π(F ) is 
precisely the image of F .

Let η ∈ U be the generic point and assume by way of contradiction that r−1
1 (σ(η))

contains two points ξ1 �= ξ2. Then via the projection π the irreducible sets Fi = {ξi} ⊂ F

both dominate U . Since PicT /U decomposes into disjoint quasi-projective subschemes 
PicϕT /U via the Hilbert polynomial ϕ [21, 9.6.20], each Fi is contained in some PicϕT /U

and hence is quasi-projective over U , therefore the images of Fi → U are constructible 
by Chevalley’s theorem [15, II, Exercise 3.19] and contain open subsets Ui ⊂ U because 
they contain the generic point η. Then the projection F → U has fibers with at least 
two elements over the open subset U1 ∩ U2, contradicting the fact that PicTt → PicDt

is injective for very general T ∈ U . Therefore r−1
1 (σ(η)) is either empty or consists of a 

single point ξ.
Case 1: r−1

1 (σ(η)) = ∅. Each connected component Fi of the closed set F ⊂ PicT /U

lies in some PicϕT /U , hence, as above, Fi → U is quasi-projective. Since η does not lie 
in the image, the constructible set π(Fi) lies in a finite union of proper subvarieties of 
U . Taking the union over all Hilbert polynomials ϕ ∈ Q[z] shows that π(F ) lies in a 
countable union of proper closed subvarieties of U .

Case 2: r−1
1 (σ(η)) = {ξ}. Let F1 = {ξ} ⊂ F ; as above F1 → U is quasi-projective and 

is also dominant. Since the very general fiber has size at most 1 by Proposition 2.7, we 
conclude that F1 → U is birational; hence, there is an open subset U ′ ⊂ U and a section 
τ : U ′ → F1 ∩ Q to the projection. Now let � ∼= P 1 be a general pencil in |B| meeting 
U ′ and let V = P 1 ∩ U ′. � is determined by a general pair of surfaces T0, T1 ∈ |B| that 
intersect in a smooth connected curve C, because |B| is a very ample linear system, and 
C is the base locus of the pencil. Any fixed base point p ∈ C gives a section to the 
corresponding family TV → V of surfaces, hence the Comparison Theorem [21, 9.2.5]
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applies and PicTV /V represents the relative Picard functor PicTV /V . In particular, the 
section τ constructed above gives rise to a line bundle M on TV such that MDt

∼= L|Dt

for each t ∈ V [21, 9.4.3]. Extend M to the family TP1 over the all of P 1 [15, Prop. 6.5]
and continue to call this bundle M . The total family TP1 is isomorphic to the blowup 
X̃ → X at C [2, 1.3], hence Pic X̃ ∼= PicX ⊕ Z · E, where E is the exceptional divisor 
and we write M = M ′ + kE with M ′ ∈ PicX and k ∈ Z. The restriction to T is 
M ′|T + kE|T = M ′|T + kOT (C), which is the image of M ′′ = M ′ + kOX(T ) ∈ PicX
because C is the intersection of two divisors in |B|. Finally since M ′′|D ∼= L|D and 
PicP → PicD is injective, it follows that M ′′|P = L and L ∈ PicP is in the image of 
PicX. �
Remark 2.9. In the case X = P 3 and A = O(1) considered by Griffiths and Harris [12], 
Theorem 2.8 is immediate because P = P 2 is an actual plane and restriction gives an 
isomorphism PicX ∼= PicP .

Remark 2.10. It is interesting to note how ubiquitous pencils are in Noether-Lefschetz 
arguments. Lefschetz started it with his famous Lefschetz pencil [22], in which the sur-
faces possessed at worst a single A1 singularity. Later the argument of Griffiths and 
Harris [12] for X = P 3 used a general pencil of degree d surfaces with special member a 
reducible union of a plane curve P and a degree d − 1 surface T . Above we use two more 
aspects of pencils, namely the geometric description of their total families as blowups 
and the fact that the total family of a pencil of ample divisors has a section and that 
hence the relative Picard scheme represents the relative Picard functor for the Zariski 
topology.

Remark 2.11. For smooth irreducible T, P and D = T ∩ P we have an isomorphism 
Pic(T ∪ P ) ∼= PicT ×Pic D PicP [17, 5.1]; in other words,

Pic(T ∪ P ) −−−−→ PicP
⏐⏐�

⏐⏐�
PicT −−−−→ PicD

(13)

is Cartesian, so the restriction PicX → Pic(T ∪ P ) is an isomorphism by Theorem 2.8. 
While this may suggest that Theorem 1 is true, it is not a proof, because Picard groups 
of surfaces can shrink in the limit; for example, smooth quadrics in P 3 degenerate to the 
union of two planes, whose Picard group is Z [17, Ex. 5.2]. To make the limiting idea 
rigorous, we need a family in which line bundles extend to the reducible fiber.

2.3. Resolution of a pencil of surfaces

We continue to work within the setting of Theorem 1, with A, B very ample line 
bundles on the smooth threefold X. For surfaces P ∈ |A|, T ∈ |B|, S ∈ |A ⊗ B| defined 
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by equations fP , fT , fS , we can form the family M ⊂ X × P 1 with (local) equation 
tfS −fP fT = 0. For P and T satisfying the conclusion of Theorem 2.8 above and Zariski 
general S, the intersection curve D = P ∩T is a smooth, connected curve and the fibers 
Mt are smooth for general t �= 0. The total family M is visibly singular at the intersection 
S ∩ P ∩ T in the reducible central fiber t = 0 by the Jacobian criterion and the natural 
map PicX → PicM0 is an isomorphism for very general T and P by Remark 2.11.

To resolve the singularities in the central fiber, let X̃ → X be the blow-up at S ∩ T

and let M̃ ⊂ X̃ × P 1 be the strict transform of M ⊂ X × P 1, creating Family (3). 
For general choices of S, T, P , the curve S ∩ T ⊂ Mt is a constant Cartier divisor for 
general t �= 0 so that M̃t

∼= Mt. Moreover S ∩ T is Cartier on T at the central fiber 
but meets P transversely in m distinct points, so we have T̃ ∼= T and P̃ → P is the 
blow up along S ∩ T ∩ P . Just as distinct lines through a point p ∈ P 2 are separated 
when a point p is blown up, so surfaces containing S ∩ T are separated in X̃ and in 
particular the intersection S̃ ∩ P̃ ∩ T̃ is empty in the central fiber, so the total family 
M̃ is nonsingular near t = 0. If the intersection S ∩ D consists of m distinct points 
q1, . . . qm and S ∩ T is a smooth connected curve, then Pic X̃ ∼= PicX ⊕ Z with second 
summand generated by the exceptional divisor E and Pic P̃ ∼= PicP ⊕ Zm with the 
latter summands generated by the exceptional divisors Ek. With these observations the 
following commutative diagrams can be identified

(a)

Pic X̃ −−−−→ Pic P̃
⏐⏐�r1

⏐⏐�r2

Pic T̃ −−−−→ Pic D̃

(b)

PicX ⊕ Z −−−−→ PicP ⊕ Zm

⏐⏐�r1

⏐⏐�r2

PicT −−−−→ PicD

(14)

where in Diagram (14b) the restriction maps are given by r1(L, a) = L|T +aOX(S)|T and 
r2(A +

∑
bkEk) = A|D +

∑
bkqk and the top horizontal map is (L, a) �→ (L|P , a 

∑
Ek).

We interpret the line bundle N = OM̃ (P̃ )|M̃0
on M̃0 = T̃ ∪ P̃ . Its restriction to T̃

is OT̃ (D̃) by intersecting divisors. Noting that P̃ + T̃ is linearly equivalent to divisors 
Mt disjoint from P̃ for t �= 0, we see that OP̃ (P̃ ) = OP̃ (−T̃ ) = OP̃ (−D̃). We can also 
see N as the restriction of E − OX(T ) ∈ Pic X̃: E ∩ T̃ is identified with S ∩ T ⊂ T so 
the corresponding restriction to T̃ ∼= T is OX̃(S̃ − T̃ )|T̃ = OX̃(P̃ )|T̃ = OT̃ (D̃). Similarly 
the total transform of D ⊂ P in P̃ can be written D̃ +

∑
Ek, so the restriction of 

−(OX(T ) −E) to P̃ is −(OX(D)|P̃ −
∑

Ek) = OP̃ (D̃). We conclude that

N = OM̃ (P̃ )|M̃0
∼= E −OX(T )|M̃0

. (15)

Proposition 2.12. Diagram (14) is Cartesian for very general S ∈ |A ⊗B|.

Proof. We vary S ∈ |A ⊗B|. Let W ⊂ |A ⊗B| denote the open subset of smooth surfaces 
S for which S ∩D consists of m distinct points and form

J = {(S, q1, . . . , qm) ∈ W ×Dm : S ∩D = {q1, . . . , qm}} π1−−→ W.
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For each B ∈ PicT, A ∈ PicP and b1, . . . , bm ∈ Z consider the set

K = K(B,A, b1, . . . , bm)

= {(S, q1, . . . , qm) ∈ J : B|D −A|D −
∑

bkqk ∈ Pic0X ⊂ Pic0D}.

Clearly K depends only on the classes of B and A modulo Pic0 X, which we regard 
as a common subgroup of the groups PicT, PicP and PicD. Since Pic0 X = Pic0 P

and Pic0 X = Pic0 T and the quotients PicT/ Pic0 X and PicP/ Pic0 X are finitely 
generated, there are countably many distinct such subsets K to consider. Notice also 
that K is closed: for most choices the divisor B|D −A|D −

∑
bkqk ∈ PicD has nonzero 

degree so that K is empty; otherwise, Pic0 X ⊂ Pic0 D is a projective Abelian variety 
and K is its preimage under the morphism (S, q1, . . . qm) �→ B|D −A|D −

∑
bkqk.

Now suppose that K = J . The projection π : J → W is étale of degree m! and the 
monodromy group acts on the fibers of π1 as the full symmetric group Sm [1, p. 111], 
so (bi − bj)(qi − qj) ∈ Pic0 X for each i and j. For fixed dij = bi − bj , the set of tuples 
(S, q1, . . . , qm) ∈ J with dij(qi − qj) ∈ Pic0 X is closed because Pic0 X is projective. 
It is also a proper subset because we can vary S to take (qi, qj) to any pair of points 
p, q ∈ D, but dij(p − q) /∈ Pic0 X for general p �= q ∈ D because the subgroup gen-
erated by all dij(p − q) is the image of the (dij)th-power map ψdij

: Pic0D → Pic0D, 
which is surjective in characteristic zero1: the image is not contained in Pic0 X because 
dim Pic0 X = dim Pic0 P < dim Pic0 D by Remark 2.5. Thus π(K) is a proper closed 
subset of W if the bk are not all equal.

Choose S to avoid the countable union of proper closed subsets K(B, A, b1, . . . , bm)
with nonconstant bk. Then for B ∈ PicT and A +

∑
bkEk ∈ Pic P̃ with the same 

restriction in PicD there is b ∈ Z with bk = b for 1 ≤ k ≤ m and so 
∑

bkqk = b 
∑

qk =
bOP (S)|D is in the image PicP → PicD. Theorem 2.8 tells us that there is a unique 
L ∈ PicX with L|T = B and L|P = A +bOP (S). It follows that M = (L −bOX(S)) +bE ∈
PicX ⊕Z satisfies M|T = B and M|P̃ = A + b 

∑
Ek; moreover, M is unique because b

is equal to the bk and PicX → PicT is injective. �
Corollary 2.13. In the setting of Proposition 2.12, Pic M̃0 = PicX ⊕ Z, with the second 
summand generated by N = OM̃ (P̃ )|M̃0

for very general S, T, P .

Proof. This follows immediately from Proposition 2.12 and Identification (15). �
3. Properness of components

In Section 2 we showed that the Noether-Lefschetz components are closed in the open 
set U ⊂ |A ⊗B| consisting of smooth surfaces S for which the restriction Pic0 X → Pic0 S

is an isomorphism. To finish the proof of Theorem 1, we need only prove the following:

1 Over C it amounts to multiplication by dij on a product of tori.
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Proposition 3.1. Each Noether-Lefschetz component Σ ⊂ U is proper.

Proof. Assume that some Noether-Lefschetz component Σ ⊂ U is not proper. Then 
by Proposition 1.4, Σ = hU (W ) for some irreducible component W ⊂ Wϕ ⊂ Divϕ

U

with Wϕ as in Decomposition (7) and some Hilbert polynomial ϕ ∈ Q[z], so that the 
projection hU : W → U is dominant and hence hU (W ) contains an open set V . Choosing 
surfaces P ∈ |A|, T ∈ |B|, and S ∈ U ⊆ |A ⊗B| as in Corollary 2.13, we obtain a pencil 
� ∼= P 1 in |A ⊗ B| passing through P ∪ T and S. Then, with the identification of �
with P 1, the restriction W ∩ h−1

U (P 1) → P 1 is dominant, so there is an integral curve 
E0 ⊂ W ⊂ Hilbϕ

|A⊗B| for which the projection f : E0 → P 1 is onto. Let E → E0 be 
the normalization and π : Z → E the base extension of Family (3), giving the following 
diagram.

Z −−−−→ M̃
⏐⏐�π

⏐⏐�
E

f−−−−→ P 1

We obtain a flat family C ⊂ Z ⊆ X̃ × f−1(P 1 ∩ V ) where Cw ⊂ Zw is Cartier for 
each w ∈ f−1(P 1 ∩ V ), giving rise to L = OZ(C) ∈ Pic(π−1(f−1(P 1 ∩ V ))). Note that 
f−1(P 1 ∩ V ) contains no pre-image of 0 ∈ P 1 by our choice of V ⊂ U , since M̃0 is 
reducible.

If f is unramified at some point p ∈ f−1(0), we can apply [15, II, 6.5] twice to extend 
L to a neighborhood of Zp

∼= P̃ ∪D T ∼= M̃0 because Z is smooth near p: Corollary 2.13
now shows that Lp = R+aOZ(P̃ )|Zp

with R ∈ PicX and a ∈ Z. Since the restriction of 
L −R− aOZ(P̃ ) to Zp is trivial, the line bundles Lw −R− aOZ(P̃ ) lie in the image of 
Pic0 X for w in an open neighborhood of p by Proposition 1.3, but OZ(P̃ ) is supported 
at p, so Lw −R ∈ Pic0 X and hence Lw ∈ PicX for w near p, showing that Σ ⊂ U is a 
proper closed subset.

If f is ramified at each p ∈ f−1(0), choose one such p. We will desingularize Z and 
then extend L and argue as above. Up to unit the local homomorphism OP1,0 → OE,p

sends t to us for some s > 0, where t and u generate the respective maximal ideals in 
OP1,0 and OE,p. Since M̃ is locally defined in X̃ × A1 by an equation fP̃ fT − tfS = 0, 
the base extension Z is locally defined in X̃ × E by fP̃ fT − usfS = 0. Since fP̃ , fT and 
fS have no common zeroes in X̃, Z is singular where fP̃ = fT = u = 0 and the total 
family Z has As−1 singularities along D̃ = P̃ ∩ T in the central fiber Zp.

The As−1 singularities have a standard resolution Z̃ → Z [18, 5.1 and 5.3]: One 
successively blows up curves Di

∼= D̃ to obtain a linear chain of P 1-bundles Ii over D̃, 
giving the description

Z̃p = P̃ ∪D0 I1 ∪D1 ∪ · · · ∪ Is−1 ∪Ds−1 T
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(see [12, p. 38] for a picture). Each Ii is a ruled surface over both Di and Di−1, which 
are disjoint curves in Ii. Defining line bundles N0 = OZ(P̃ )|Z̃p

and Ni = OZ(Ii)|Z̃p
for 

0 < i < s, we now claim that

Pic Z̃p = 〈PicX,N0, N1, . . . , Ns−1〉. (16)

Assuming Claim (16), proceed as in the unramified case. Since Z̃ → Z → E is smooth 
in a neighborhood of Z̃p, we can extend the line bundle L to an open neighborhood of Z̃p. 
By Claim (16) we can write Lp = R+ aP̃ |Z̃p

+
∑

aiIi|Z̃p
for some R ∈ PicX and a ∈ Z

and ai ∈ Z so that L −R−aP̃−
∑

aiIi is trivial at p. Therefore Lw−R−aP̃−
∑

aiIi|Z̃p
∈

Pic0 X for w near p by Proposition 1.3, hence Lw−R ∈ Pic0 X, since P̃ and Ii are vertical 
components contained in Z̃p. Therefore Lw ∈ PicX for w in an open neighborhood of p
and again Σ ⊂ U is proper.

It remains to prove Claim (16). For this, first note that just as in Remark 2.11,

Pic Z̃p
∼= Pic P̃ ×Pic D0 ×Pic I1 ×Pic D1 × · · · × Pic Is−1 ×Pic Ds−1 PicT.

Therefore, Pic Z̃p can be thought of as the set of (s + 1)-tuples (α0, α1, . . . , αs), where 
α0 ∈ Pic P̃ , αs ∈ PicT , and αi ∈ Pic Ii for 1 ≤ i ≤ s − 1, with the requirement that 
αi−1|Di = αi|Di

, 1 ≤ i ≤ s. Each successive blowup has analytic form XY − urZ

blown up at (X, Z, u), and a local calculation shows that the total transform of (X, Y, u)
contains one copy of the exceptional divisor, so each Ii appears just once in the total 
transform of Zp = P̃ ∪ T . Thus we see that the divisor Z̃0 = π∗f∗(0) is the sum of 
the (reduced) divisor Z̃p and the other components disjoint from Z̃p. Moreover, Z̃0 is 
linearly equivalent to a divisor disjoint from Z̃0, so in particular OZ̃(Z̃p)|Z̃p

is trivial. 
We can use this to calculate the Ni explicitly as tuples. For example, OZ(P̃ )|P̃ = −D0: 
Z̃p has trivial restriction to Z̃p and hence trivial restriction to P̃ , but the restriction of 
Z̃p − P̃ to P̃ is D0, because I1 is the only component that intersects P̃ : it follows that 
N0|P̃ = −D0 and that as a tuple N0 = (−D0, D0, 0, . . . , 0). Similarly,

N1 = (D0,−D0 −D1, D1, 0, . . . , 0), N2 = (0, D1,−D1 −D2, D2, 0, . . . , 0), and so on.

Now let α ∈ Pic Z̃p, and express it as a tuple (α0, α1, . . . , αs) as above. Successively add 
multiples of the divisors

k∑
i=0

Ni = (0, 0, . . . ,−Di︸︷︷︸
k

, Di︸︷︷︸
k+1

, 0, . . . , 0)

to reduce to the case that each αi with 0 < i < s is the pullback of a divisor on Di−1 (or, 
equivalently, Di) under the ruled surface projection from Ii. Agreement on the respective 
Di−1 and Di gives
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α0|D0 = α1|D0 = α1|D1 = · · · = αs|Ds−1 ,

so via the identification D0 ∼= Ds−1, Proposition 2.12 and Corollary 2.13 give L ∈ PicX
and a ∈ Z with α0 = L + aD0 and αs = L − aDs−1. Now add

a(sN0 + (s− 1)N1 + · · · + Ns−1) = a(−D0, D0 −D1, D1 −D2, . . . , Ds−2 −Ds−1, Ds−1)

to reduce to the case in which α is of the form (L, β1, . . . , βs−1, L) where each βi is a 
pullback of a divisor on Di−1 to Ii. Since PicX → PicDi is injective by Proposition 2.7, 
we have βi|Di

= L|Di
for each i, so α is the restriction of L ∈ PicX, and we have 

shown that every divisor α ∈ Pic Z̃p is the restriction of a divisor in PicX modulo the 
restrictions of N0, N1, . . . , Ns−1. �
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