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Abstract. We bound the third Chern number of a minimal smooth threefold with ample
canonical bundle by quadratic functions in the first two Chern numbers.

One of the goals in algebraic geometry is the classification of algebraic va-
rieties. This is usually done by first determining which discrete invariants
occur (geography) and then describing the continuous families with fixed
invariants (diffeomorphism classes). For example, if we use the geometric
genus as discrete invariant for smooth curves, it is well known that the moduli
of curvesM, of fixed genus is irreducible. Things are more complicated in
higher dimension.

While the geography (Chern numbers) for minimal surfaces is fairly well
understood [13, 8], Catanese has shown that the diffeomorphism classes for
minimal surfaces with fixed Chern numbers generally have many irreducible
components [2] (see also [4]). In his paper [8], Hunt initiates the study of ge-
ography for threefolds. He points out that some restriction on the threefolds is
necessary to have a good geography (se@&ad 31 of [8] for a discussion):
he considers threefolds which are minimal or have ample canonical bundle.

In the present paper, we are interested in Chern numbgre; 2, c3]
which arise from smooth threefolds with ample canonical bundle. One of-

ten studies instead the Chautios (%, Ci—iz e A?(Q). Hunt [8] and Liu

[12] have constructed threefolds whose Chern ratios fill in various triangu-
lar shaped regions. For threefoldshp, the first author has determined the
limit points of the Chern ratios [5] as well as explicitly describing the region

corresponding to determinantal threefolds [3]. Further, she has described the
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region corresponding to general threefold complete intersections. Beyond
this, little is known about existence.
As to restrictions on the Chern numbers, there are the easy inequalities

3
ci’ < 0andcic,; < 0. Yau proved the much more difficultinequal.g% < g

In the present note we show that there are quadratic polynoial®.

in two variables such tha1(c3, c1c2) < c3 < Q2(c3, c1c2) (theorem 7).
Unfortunately, the corresponding region of Chernratios is not bounded. There
is alinear upper bound e due to Van de Ven in the case where the canonical
bundle is very ample (remark 8).

The method of proofis to write (7x ) andy (R2x) as linear functions of the
three Chern numbers and then find upper bounds on the odd cohomology of
Tx andQ2y in terms of the first two Chern numbers. The upper bounds on the
first cohomology group dimensions are obtained by first noting that there isan
effective bound on which multiple of Ky is spanned and gives a birational
map to projective space (one can take- 6 by a recent refinement of Lee
[11] on earlier work of Lazarsfeld and Ein [7]) and then using a Castelnuovo—
Mumford regularity argument on the tangent and cotangent bundles of a
smooth surface sectidhof r K x . Our bounds hold more generally for smooth
minimal projective threefolds whose intermediate cohomologlé€2y ®
mKyx) andH! (Tx ® mKy) vanish for 0< i < 3 andm << 0 (see remark
6).

Throughout this papek denotes a smooth threefold over the complex
numbersC with ample canonical bundl&x. We letr > 1 be an integer
such thatr — 1)Ky is spanned by global sections ankly gives a birational
map onto its image in projective space. We @gt(l) = rKx and letS C
X be a general hyperplane section under the map associate¢d(1o. By
Jouanolou’s Bertini theorem ([10], theorem 6.10)s a smooth irreducible
surface. The irregularity ig = h1(05) = h'(Ox) (equality is due to the
Kodaira vanishing theorem) and the geometric genus of the surfage=s
h°(Ks). The invertible shea®s(1) gives a morphism fron§ to a projective
space with two dimensional image, hence Jouanolou’s Bertini theorem shows
that the general hyperplane section of this map is a smooth connected curve
C of genusg.

Let ¢; denote the Chern classesXfwith corresponding Chern numbers
3, c1c2 andes. The Hirzebruch—-Riemann—Roch theorem ([9], Appendix A,
theorem 4.1) gives formulas for the Euler characteristic of the tangent sheaf
and the sheaf of differentials:

1 19 1
xTx = 56% — 572+ 563 1)
1 1
XQx = —c1c2 — =c3 (2)

24 2
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We will boundcs by finding lower bounds for these Euler characteristics
in terms ofc$ andc;c.

Lemma 1. The following bounds on cohomology groups hold.
@ h'Tx < 3,20 Ts(=m) +q +h1Os(D)

(b) K3Tx < q + h?Ts

(©)hlQx <Y, o hiQs(—m)

(d) n®Qx < pq.

Proof. In considering all nonpositive twists of the exact sequences

0— Tx(-1) - Tx - Txls > 0 3)
0— Ts— Txls > 0s(1) > 0 4

we obtain the inequality7y < > _ hlTs(—m) + Y., .o h*Os(—m + 1)
and the second sumAs©s+h'0s(1) = g +h'O@4(1) by Kodaira vanishing,
proving part (a).

Twisting the exact sequence 3 with (1) gives the inequality:®7y <
h?Tx|s(1) + h3Tx(1). The duality H37x(1) L H°Qx(—(r — DKyx) C
HOQy shows thati®Tx (1) < h°Qx = h'O@x = ¢. The sequence 4 further
givesh?Ty|s(1) < h?Ts(1) (@sH?Os(2) L H°Os(—(r — DKxls) = 0 by
Kodaira vanishing) while the restriction sequenceTgfl) to the curveC
shows that:?75(1) < h?Ts. Combining, we obtain part (b).

As in part (a), the nonpositive twists of the exact sequences

0— Qx(-1) —» Qx —> Qx|s > 0 5)

0— O5(—1) — Qx|s > Qs —> 0 (6)

give part (c). For part (d), we haveQy = h'Ky = h?Ox and the exact
sequence

0— (gx(—l)—) (9x—> (95—) 0
givesh?Ox < h*05 = h°Ks = p,.

Lemma 2. Let S be a smooth connected surface with spanned and ample
line bundle®s (1) and suppose that is a smooth connected section®f(1).

Let & be a vector bundle of such that:°(&|-(—R)) = 0 for someR > O.
Then

(@) h'e(—R — 1) < h'&(—R)

(b) If K€1) # 0andl < —R thenhl&( — 1) < h'&(l)
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Proof. Assertion (a) is immediate after twisting the restriction sequence
0> &-1)—>8&—8c—>0 )
by —R. For/ < —R we now consider the exact sequences
0 €Y@ Ks(—1) = €' @ Ks(—1+1) > € @ Kc(~1) > 0

in which the mapH(«;) is Serre dual ta4*(g;). Duality on the curveC
gives the vanishing/*(6¥ @ K¢ (R)) L. H°(&c(—R)) = 0. According to the
Castelnuovo—Mumford theorem ([14], theorem 2), the multiplication maps

H(Qs ® Kc(—1)) ® [0, s1] = H°(Qs ® Ke(—1 + 1)

are surjective fof < —R and sectionsy, s1 € H°O¢ (1) which spar9¢(1).
In particular, these sections may be chosen as the restriction of sections of
H°04(1).

We now see from the commutative diagram

HO(€¥ ® Ks(—1 + 1)) ® H(Os5(1)) = H(E¥ ® Kc(—1)) ® [s0. 51]

- \
H(&Y ® Ks(—1 +2) -  HY%EV®Kc(-1+1)

that if HO(rr;) is surjective for somé < —R, thenH(rr,) is surjective for all

n < I. In other words, ifH () is an isomorphism far < —R, thenH(«,,)

is an isomorphism for alk < [. This would contradict Serre’s vanishing
theorem ifH*(8Y ® Kg(—1)) L HY(&(1)) # 0, proving part (b).

Corollary 3. LettingA = h'7s, B = h°0O¢(1), D = h'Qg andE = g, we
have the following estimates.

@) Y,20h Ts(—m) < (A2 +2AB + B2+ 9A + 7B + 4)

() >,o0h'Qs(—m) < 3(D? + 6DE + 9E? + 9D + 15E).

Proof. The exact sequence
0— Tcﬁ75|c—> Oc(l)—>0 (8)

shows that:°7s|c(—2) = 0 (Tc(—2) and@¢(—1) have negative degree),
hence we may tak® = 2 in lemma 2. The restriction sequence

0— T5(=1) - 75 > Tslc > 0

yieldshlTs(—1) < A+h%Ts|c andhlTs(—2) < A+h°Ts|c +hoTs|c(—1).
Since7¢ has negative degree, the sequence 8 showsitgtc < B and
h°Tslc(—=1) < 1. Applying lemma 2, we deduce part (a).

Similarly #1°Qg|c(—3) = 0 and we will takeR = 3 in lemma 2. The
restriction sequences show thd&2s(—1) < D + Y7~ i°Qs|c(—p) and
we have the bount®Q|c(—p) < h°Qs|c < h°K¢c = E. Combining these
with lemma 2 gives part (b).
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Lemma 4. We have the following estimates.
(@)q <g=1—31+2)r%;

(b) h2T5 < 2K§+q +1<2— 33+ %r2+2r)c§
() h1Ts < 2 — Breser — 2(16r3 + 182 + 5r)c3
(d) pe < _%2(”0102 + (143 + 9% + r)ci’)
(€)n'0s(1) < —r3c +1

() h°0c(1) < —2r3c3 +1

Q) h'iQs <2 — (gr)clc — %(161‘3 + o2 I’)C?.

Proof. The inequality of part (a) comes from the exact sequence
0— O5(-1) - Os —> Oc — 0 9)

and Kodaira vanishing. Sinceg2- 2 = degKc, the equality in part (a)
follows from the isomorphisnKs = (1 + 2r)Kx|c. Tensoring the se-
quence 9 by9s(2) givesh'Os(1) < h'05(2) + h°0¢(2) andhtOs(2) =
h'Ks(—2) = h'(=(r — 1) Kx|s) = 0 by Kodaira’s vanishing theorem. To
estimater®0@¢(2), we note that ifO(2) is nonspecial, then®0¢(2) =
(3r2 — r¥c} while if it is special, then Clifford’s theorem gived0¢(2) <
—r3¢2 + 1. In either casei°0¢(2) < —r3c3 + 1 and we deduce part (e).
Since(r + 1)Ky gives a birational map of onto its image in projective
space,Ks = (r + 1)Kx|s gives a birational map of to projective space
and hence is minimal of general type and has a smooth canonical curve (as
K is spanned, Jouanolou’s Bertini theorem applies). Following [2], theorem
C, we obtain the first inequality of part (b) and7s = 0. Applying part
(a) and calculating the intersectidn? = —(r + 1)?7¢3 gives the second
inequality of part (b). Since Ts = h°Ts — h'Ts, the computatiory Ts =
2(5rc1cp — (2r3 + 9% + 7r)c3) and part (b) yield part (c).
A calculation shows that

1
l-g+p,=x0s5= —1—2(rclcz +r(r+ 1@ + l)ci’).

Combining this with part (a) gives the inequality of part (d). Similarly one
can compute thak Qs = (2r)cicz + &r(r + 1)(4r — )ci. Noting that
hZQS = ths =q andhOQS = h1(93 =q we find thatXQS = 2q — hlgs,

and applying the inequality of part (a) gives part (g). Itis easily checked that
xOc (1) < 0and henc®c (1) is special. Applying Clifford’s theorem gives
part (f).

Corollary 5. There exist quadratic form@i, O, with coefficients ifQ[r]
such that the following statement holds: For each smooth thregfgi@iwith
Kx ample and each integer> 1 such thatr — 1)Ky is spanned andK x
gives a birational map to projective space, we have

3 3
Q1(cy, c162) < c3 < Qo(c7, c102).
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Proof. Follows from equations 2 and 1, lemma 1, corollary 3 and lemma 4.

Remark 6.We note that the same proof goes through if we only assume
the vanishings of the intermediate cohomologié&Ty ® mKx) = 0 and
h(Qx ®mKy) = 0for0 < i < 3andm << 0. Indeed, these vanish-
ings imply thath(7x|s(m)) = 0 for m << 0, which in turn implies that
h'(Ts(m)) = 0 form << 0 via the sequence 4 and the Kodaira vanishing
theorem. In particular, we deduce sufficient vanishings for the conclusion of
lemma 2 to hold.

Theorem 7. There exist quadratic form@1, Q, with coefficients irf) such
that every smooth threefoldl/C with Kx ample has third Chern number is
bounded by

01(c3, c1c2) < c3 < Q2(c3, c1c2).

Proof. Applying [11], theorem 3.1 and proposition 3.8, we may take 6
in corollary 5.

Remark 8.In the case thaKy is very ample, there is a linear bound on
due to Van de Ven (see [8], introduction):

c3 < —2c1c0 — 7c§.
There is a similar bound whenK x is very ample.
Remark 9.0f course, one can compute the quadratic forms of theorem 7
explicitly. Settingx = ¢3 andy = c1c», we obtain

919
Q1 = —63520%% — 7970vy — 25y% + 14750¢ + TV 48

and

1151
Q2 = 177156%? + 13310cy + 25y% — 23040 — 5V +58

Recalling that the hyperplane section surfacis minimal of general type
(see proof of lemma 4), we may lift Noether's inequality to the threefold
to find that—6 + 203« < y. In summary, we find that the Chern numbers
x = ci’, y = c1¢2, z = c3forasmooth threefold with ample canonical bundle
satisfy the following inequalities:

x<0,y<0
3
—6+203x§y§§x

01<z<0>
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