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Abstract. We bound the third Chern number of a minimal smooth threefold with ample
canonical bundle by quadratic functions in the first two Chern numbers.

One of the goals in algebraic geometry is the classification of algebraic va-
rieties. This is usually done by first determining which discrete invariants
occur (geography) and then describing the continuous families with fixed
invariants (diffeomorphism classes). For example, if we use the geometric
genus as discrete invariant for smooth curves, it is well known that the moduli
of curvesMg of fixed genus is irreducible. Things are more complicated in
higher dimension.

While the geography (Chern numbers) for minimal surfaces is fairly well
understood [13,8], Catanese has shown that the diffeomorphism classes for
minimal surfaces with fixed Chern numbers generally have many irreducible
components [2] (see also [4]). In his paper [8], Hunt initiates the study of ge-
ography for threefolds. He points out that some restriction on the threefolds is
necessary to have a good geography (see §2.6 and 3.1 of [8] for a discussion):
he considers threefolds which are minimal or have ample canonical bundle.

In the present paper, we are interested in Chern numbers [c3
1, c1c2, c3]

which arise from smooth threefolds with ample canonical bundle. One of-
ten studies instead the Chernratios ( c1

3

c1c2
, c3

c1c2
) ∈ A2(Q). Hunt [8] and Liu

[12] have constructed threefolds whose Chern ratios fill in various triangu-
lar shaped regions. For threefolds inP5, the first author has determined the
limit points of the Chern ratios [5] as well as explicitly describing the region
corresponding to determinantal threefolds [3]. Further, she has described the
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region corresponding to general threefold complete intersections. Beyond
this, little is known about existence.

As to restrictions on the Chern numbers, there are the easy inequalities

c3
1 < 0 andc1c2 < 0. Yau proved the much more difficult inequality

c3
1

c1c2
≤ 8

3.
In the present note we show that there are quadratic polynomialsQ1, Q2

in two variables such thatQ1(c
3
1, c1c2) ≤ c3 ≤ Q2(c

3
1, c1c2) (theorem 7).

Unfortunately, the corresponding region of Chern ratios is not bounded. There
is a linear upper bound onc3 due to Van de Ven in the case where the canonical
bundle is very ample (remark 8).

The method of proof is to writeχ(TX)andχ(�X)as linear functions of the
three Chern numbers and then find upper bounds on the odd cohomology of
TX and�X in terms of the first two Chern numbers. The upper bounds on the
first cohomology group dimensions are obtained by first noting that there is an
effective bound on which multipler of KX is spanned and gives a birational
map to projective space (one can taker = 6 by a recent refinement of Lee
[11] on earlier work of Lazarsfeld and Ein [7]) and then using a Castelnuovo–
Mumford regularity argument on the tangent and cotangent bundles of a
smooth surface sectionS of rKX. Our bounds hold more generally for smooth
minimal projective threefolds whose intermediate cohomologiesHi(�X ⊗
mKX) andHi(TX ⊗ mKX) vanish for 0< i < 3 andm << 0 (see remark
6).

Throughout this paperX denotes a smooth threefold over the complex
numbersC with ample canonical bundleKX. We let r > 1 be an integer
such that(r −1)KX is spanned by global sections andrKX gives a birational
map onto its image in projective space. We setOX(1) = rKX and letS ⊂
X be a general hyperplane section under the map associated toOX(1). By
Jouanolou’s Bertini theorem ([10], theorem 6.10)S is a smooth irreducible
surface. The irregularity isq = h1(OS) = h1(OX) (equality is due to the
Kodaira vanishing theorem) and the geometric genus of the surface ispg =
h0(KS). The invertible sheafOS(1) gives a morphism fromS to a projective
space with two dimensional image, hence Jouanolou’s Bertini theorem shows
that the general hyperplane section of this map is a smooth connected curve
C of genusg.

Let ci denote the Chern classes ofX with corresponding Chern numbers
c3

1, c1c2 andc3. The Hirzebruch–Riemann–Roch theorem ([9], Appendix A,
theorem 4.1) gives formulas for the Euler characteristic of the tangent sheaf
and the sheaf of differentials:

χTX = 1

2
c3

1 − 19

24
c1c2 + 1

2
c3 (1)

χ�X = 1

24
c1c2 − 1

2
c3 (2)
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We will boundc3 by finding lower bounds for these Euler characteristics
in terms ofc3

1 andc1c2.

Lemma 1. The following bounds on cohomology groups hold.
(a) h1TX ≤ ∑

m≥0 h1TS(−m) + q + h1OS(1)

(b) h3TX ≤ q + h2TS

(c) h1�X ≤ ∑
m≥0 h1�S(−m)

(d) h3�X ≤ pg.

Proof. In considering all nonpositive twists of the exact sequences

0 → TX(−1) → TX → TX|S → 0 (3)

0 → TS → TX|S → OS(1) → 0 (4)

we obtain the inequalityh1TX ≤ ∑
m≥0 h1TS(−m) + ∑

m≥0 h1OS(−m + 1)

and the second sum ish1OS +h1OS(1) = q+h1OS(1) by Kodaira vanishing,
proving part (a).

Twisting the exact sequence 3 withOX(1) gives the inequalityh3TX ≤
h2TX|S(1) + h3TX(1). The dualityH 3TX(1) ⊥ H 0�X(−(r − 1)KX) ⊂
H 0�X shows thath3TX(1) ≤ h0�X = h1OX = q. The sequence 4 further
givesh2TX|S(1) ≤ h2TS(1) (asH 2OS(2) ⊥ H 0OS(−(r − 1)KX|S) = 0 by
Kodaira vanishing) while the restriction sequence ofTS(1) to the curveC
shows thath2TS(1) ≤ h2TS . Combining, we obtain part (b).

As in part (a), the nonpositive twists of the exact sequences

0 → �X(−1) → �X → �X|S → 0 (5)

0 → OS(−1) → �X|S → �S → 0 (6)

give part (c). For part (d), we haveh3�X = h1KX = h2OX and the exact
sequence

0 → OX(−1) → OX → OS → 0

givesh2OX ≤ h2OS = h0KS = pg.

Lemma 2. Let S be a smooth connected surface with spanned and ample
line bundleOS(1) and suppose thatC is a smooth connected section ofOS(1).
LetE be a vector bundle onS such thath0(E |C(−R)) = 0 for someR > 0.
Then
(a) h1E(−R − 1) ≤ h1E(−R)

(b) If h1E(l) 6= 0 andl < −R thenh1E(l − 1) < h1E(l)
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Proof. Assertion (a) is immediate after twisting the restriction sequence

0 → E(−1) → E → E |C → 0 (7)

by −R. For l ≤ −R we now consider the exact sequences

0 → E∨ ⊗ KS(−l)
αl→ E∨ ⊗ KS(−l + 1)

πl→ E∨ ⊗ KC(−l) → 0

in which the mapH 1(αl) is Serre dual toH 1(βl). Duality on the curveC
gives the vanishingH 1(E∨⊗KC(R)) ⊥ H 0(EC(−R)) = 0. According to the
Castelnuovo–Mumford theorem ([14], theorem 2), the multiplication maps

H 0(�S ⊗ KC(−l)) ⊗ [s0, s1] → H 0(�S ⊗ KC(−l + 1)

are surjective forl < −R and sectionss0, s1 ∈ H 0OC(1) which spanOC(1).
In particular, these sections may be chosen as the restriction of sections of
H 0OS(1).

We now see from the commutative diagram

H 0(E∨ ⊗ KS(−l + 1)) ⊗ H 0(OS(1))
πl→ H 0(E∨ ⊗ KC(−l)) ⊗ [s0, s1]

↓ ↓
H 0(E∨ ⊗ KS(−l + 2) → H 0(E∨ ⊗ KC(−l + 1))

that ifH 0(πl) is surjective for somel < −R, thenH 0(πn) is surjective for all
n < l. In other words, ifH 1(αl) is an isomorphism forl < −R, thenH 1(αn)

is an isomorphism for alln < l. This would contradict Serre’s vanishing
theorem ifH 1(E∨ ⊗ KS(−l)) ⊥ H 1(E(l)) 6= 0, proving part (b).

Corollary 3. LettingA = h1TS, B = h0OC(1), D = h1�S andE = g, we
have the following estimates.
(a)

∑
m≥0 h1TS(−m) ≤ 1

2(A2 + 2AB + B2 + 9A + 7B + 4)

(b)
∑

m≥0 h1�S(−m) ≤ 1
2(D2 + 6DE + 9E2 + 9D + 15E).

Proof. The exact sequence

0 → TC → TS |C → OC(1) → 0 (8)

shows thath0TS |C(−2) = 0 (TC(−2) andOC(−1) have negative degree),
hence we may takeR = 2 in lemma 2. The restriction sequence

0 → TS(−1) → TS → TS |C → 0

yieldsh1TS(−1) ≤ A+h0TS |C andh1TS(−2) ≤ A+h0TS |C +h0TS |C(−1).
SinceTC has negative degree, the sequence 8 shows thath0TS |C ≤ B and
h0TS |C(−1) ≤ 1. Applying lemma 2, we deduce part (a).

Similarly h0�S |C(−3) = 0 and we will takeR = 3 in lemma 2. The
restriction sequences show thath1�S(−l) ≤ D + ∑p=l−1

p=0 h0�S |C(−p) and
we have the boundh0�S |C(−p) ≤ h0�S |C ≤ h0KC = E. Combining these
with lemma 2 gives part (b).
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Lemma 4. We have the following estimates.
(a) q ≤ g = 1 − 1

2(1 + 2r)r2c3
1

(b) h2TS ≤ 2K2
S + q + 1 ≤ 2 − (3r3 + 9

2r2 + 2r)c3
1

(c) h1TS ≤ 2 − 5
6rc1c2 − 1

6(16r3 + 18r2 + 5r)c3
1

(d) pg ≤ − 1
12(rc1c2 + (14r3 + 9r2 + r)c3

1)

(e)h1OS(1) ≤ −r3c3
1 + 1

(f) h0OC(1) ≤ −1
2r3c3

1 + 1
(g) h1�S ≤ 2 − (5

6r)c1c2 − 1
6(16r3 + 9r2 − r)c3

1.

Proof. The inequality of part (a) comes from the exact sequence

0 → OS(−1) → OS → OC → 0 (9)

and Kodaira vanishing. Since 2g − 2 = degKC , the equality in part (a)
follows from the isomorphismKC

∼= (1 + 2r)KX|C . Tensoring the se-
quence 9 byOS(2) givesh1OS(1) ≤ h1OS(2) + h0OC(2) andh1OS(2) =
h1KS(−2) = h1(−(r − 1)KX|S) = 0 by Kodaira’s vanishing theorem. To
estimateh0OC(2), we note that ifOC(2) is nonspecial, thenh0OC(2) =
(1

2r2 − r3)c3
1 while if it is special, then Clifford’s theorem givesh0OC(2) ≤

−r3c3
1 + 1. In either case,h0OC(2) ≤ −r3c3

1 + 1 and we deduce part (e).
Since(r + 1)KX gives a birational map ofX onto its image in projective

space,KS = (r + 1)KX|S gives a birational map ofS to projective space
and henceS is minimal of general type and has a smooth canonical curve (as
KS is spanned, Jouanolou’s Bertini theorem applies). Following [2], theorem
C, we obtain the first inequality of part (b) andh0TS = 0. Applying part
(a) and calculating the intersectionK2

S = −(r + 1)2rc3
1 gives the second

inequality of part (b). SinceχTS = h2TS − h1TS , the computationχTS =
1
6(5rc1c2 − (2r3 + 9r2 + 7r)c3

1) and part (b) yield part (c).
A calculation shows that

1 − q + pg = χOS = − 1

12
(rc1c2 + r(r + 1)(2r + 1)c3

1).

Combining this with part (a) gives the inequality of part (d). Similarly one
can compute thatχ�S = (5

6r)c1c2 + 1
6r(r + 1)(4r − 1)c3

1. Noting that
h2�S = h1KS = q andh0�S = h1OS = q we find thatχ�S = 2q − h1�S ,
and applying the inequality of part (a) gives part (g). It is easily checked that
χOC(1) < 0 and henceOC(1) is special. Applying Clifford’s theorem gives
part (f).

Corollary 5. There exist quadratic formsQ1, Q2 with coefficients inQ[r]
such that the following statement holds: For each smooth threefoldX/C with
KX ample and each integerr > 1 such that(r − 1)KX is spanned andrKX

gives a birational map to projective space, we have

Q1(c
3
1, c1c2) ≤ c3 ≤ Q2(c

3
1, c1c2).
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Proof. Follows from equations 2 and 1, lemma 1, corollary 3 and lemma 4.

Remark 6.We note that the same proof goes through if we only assume
the vanishings of the intermediate cohomologieshi(TX ⊗ mKX) = 0 and
hi(�X ⊗ mKX) = 0 for 0 < i < 3 andm << 0. Indeed, these vanish-
ings imply thath1(TX|S(m)) = 0 for m << 0, which in turn implies that
h1(TS(m)) = 0 for m << 0 via the sequence 4 and the Kodaira vanishing
theorem. In particular, we deduce sufficient vanishings for the conclusion of
lemma 2 to hold.

Theorem 7. There exist quadratic formsQ1, Q2 with coefficients inQ such
that every smooth threefoldX/C with KX ample has third Chern number is
bounded by

Q1(c
3
1, c1c2) ≤ c3 ≤ Q2(c

3
1, c1c2).

Proof. Applying [11], theorem 3.1 and proposition 3.8, we may taker = 6
in corollary 5.

Remark 8.In the case thatKX is very ample, there is a linear bound onc3

due to Van de Ven (see [8], introduction):

c3 ≤ −2c1c2 − 7c3
1.

There is a similar bound whenmKX is very ample.

Remark 9.Of course, one can compute the quadratic forms of theorem 7
explicitly. Settingx = c3

1 andy = c1c2, we obtain

Q1 = −635209x2 − 7970xy − 25y2 + 14750x + 919

12
y − 48

and

Q2 = 1771561x2 + 13310xy + 25y2 − 23040x − 1151

12
y + 58.

Recalling that the hyperplane section surfaceS is minimal of general type
(see proof of lemma 4), we may lift Noether’s inequality to the threefoldX

to find that−6 + 203x ≤ y. In summary, we find that the Chern numbers
x = c3

1, y = c1c2, z = c3 for a smooth threefold with ample canonical bundle
satisfy the following inequalities:

x < 0, y < 0

−6 + 203x ≤ y ≤ 3

8
x

Q1 ≤ z ≤ Q2
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