# ZENTRALBLATT REVIEWS 

SCOTT NOLLET

## References

[1] M. Cifani, G. Pirola and E. Schlesinger, Reconstructing curves from their Hodge classes, Rend. Circ. Mat. Palermo (2) 72, No. 2, 945-958 (2023) Zbl 1510.14008.
[2] M. Griffin, K. Ono, L. Rolen and W.-L. Tsai, Limiting Betti distributions of Hilbert schemes on $n$ points, Can. Math. Bull. 66, No. 1, 243-258 (2023) Zbl 1510.14001.
[3] N. Tarasca, A pointed Prym-Petri theorem, Trans. Am. Math. Soc. 376, No. 4, 2641-2656 (2023) Zbl 1510.14026.
[4] R. Skjelnes and G. Smith, Smooth Hilbert schemes: their classification and geometry, J. Reine Angew. Math. 794, 281-305 (2023) Zbl 1506.14011.
[5] R. Ramkumar, Hilbert schemes with two Borel-fixed points, J. Algebra 617, 17-47 (2023) Zbl 1503.13007.
[6] E. Mackall, On the Chow groups of a biquaternion Severi-Brauer variety, Pac. J. Math. 321, No. 2, 359-374 (2022) Zbl 1510.14009.
[7] I. Shimada, Zariski multiples associated with quartic curves, J. Singul. 24, 169-189 (2022) Zbl 1506.14068.
[8] E. Larson, Constructing reducible Brill-Noether curves, Doc. Math. 27, 1953-1983 (2022) Zbl 1503.14027.
[9] G. Pfister and A. Płoski, Plane algebroid curves in arbitrary characteristic, IMPAN Lecture Notes 4. Warsaw: Polish Academy of Science, Institute of Mathematics (2022) Zbl 1508.14002.
[10] H. Kweon, Bounds on the torsion subgroup schemes of Néron-Severi group schemes, Adv. Math. 409 B, Article ID 108687, 28 p. (2022) Zbl 1498.14010.
[11] E. Ballico, ACM curves in multiprojective spaces, Boll. Unione Mat. Ital. 15, No. 4, 515-523 (2022) Zbl 1499.14088.
[12] A. Dimca, B. Harbourne and G. Sticlaru, On the bounded negativity conjecture and singular plane curves, Mosc. Math. J. 22, No. 3, 427-450 (2022) Zbl 1498.14088.
[13] I. Coskun and G. Smith, Very free rational curves in Fano varieties, J. Algebra 611, 246-264 (2022) Zbl 1498.14087.
[14] L. Ein, W. Niu and J. Park, A remark on global sections of secant bundles of curves, Boll. Unione Mat. Ital. 15, No. 1-2, 163-171 (2022) Zbl 1495.14004.
[15] D. Chen, Dynamical invariants and intersection theory on the flex and gothic loci, Eur. J. Math. 8, Suppl. 1, S42-S52 (2022) Zbl 1495.14042.
[16] E. Ballico, On the secant varieties of tangential varieties, J. Pure Appl. Algebra 226, No. 12, Article ID 107132, 24 p. (2022) Zbl 1495.14080.
[17] D. Chen and Q. Gendron, Towards a classification of connected components of the strata of $k$ differentials, Doc. Math. 27, 1031-1100 (2022) Zbl 1495.14043.
[18] E. Ballico, Curves in projective spaces: questions and remarks, Proyecciones 41, No. 2, 387-401 (2022) Zbl 1490.14008.
[19] P. Beri and A. Cattaneo, On birational transformations of Hilbert schemes of points on K3 surfaces, Math. Z. 301, No. 2, 1537-1554 (2022) Zbl 1490.14064.
[20] C. Keem and Y.-H. Kim, On the Hilbert scheme of smooth curves in $\mathbb{P}^{4}$ of degree $d=g+1$ and genus $g$ with negative Brill-Noether number, J. Algebra Appl. 21, No. 2, Article ID 2250022, 20 p. (2022) Zbl 1490.14009.
[21] D. Yan, Some polynomial maps with Jacobian rank two or three, Algebra Colloq. 29, No. 2, 341-360 (2022) Zbl 1486.14077.
[22] V. Starkov, The Jacobian problem for one class of nonpolynomial mappings (English, Russian original), Sib. Math. J. 63, No. 2, 348-355 (2022); translation from Sib. Mat. Zh. 63, No. 2, 418-427 (2022) Zbl 1485.14114.
[23] G. Farkas and S.Mullane, On the Kodaira dimension of Hurwitz spaces, Math. Z. 300, No. 4, 34173432 (2022) Zbl 1484.14061.
[24] F. Braun, L. Dias and J. Venato-Santos, A counterexample to a conjecture of Nollet and Xavier, Proc. Am. Math. Soc. 150, No. 4, 1795-1798 (2022) Zbl 1483.14107.
[25] J. Rojas, A. Silva and F. Xavier, Schematic union of $(n-3)$ and $(n-2)$ dimensional quadrics in $\mathbb{P}^{n}$, Bull. Sci. Math. 174, Article ID 103091, 27 p. (2022) Zbl 1483.14007.
[26] R. Ramkumar, The Hilbert scheme of a pair of linear spaces, Math. Z. 300, No. 1, 493-540 (2022) Zbl 1481.14008.
[27] K. Furukawa, Dimension of the space of conics on a Fano hypersurface, J. Pure Appl. Algebra 226, No. 6, Article ID 106970, 12 p. (2022) Zbl 1479.14007.
[28] L. Li, New inverse and implicit function theorems for differentiable maps with isolated critical points, J. Math. Anal. Appl. 506, No. 1, Article ID 125616, 21 p. (2022) Zbl 1479.58005.
[29] R. Ramkumar and A. Sammartano, On the smoothness of lexicographic points on Hilbert schemes, J. Pure Appl. Algebra 226, No. 3, Article ID 106872, 12 p. (2022) Zbl 1471.14011.
[30] H. Galeano, M. Jardim and A. Muniz, Codimension one distributions of degree 2 on the threedimensional projective space, J. Pure Appl. Algebra 226, No. 2, Article ID 106840, 32 p. (2022) Zbl 1470.14035.
[31] J. Migliore and U. Nagel, Applications of liaison, in Commutative algebra, Cham: Springer. 523-568 (2021) Zbl 1503.13006.
[32] I. Bouw, N. Coppola, P. Kılıçer, S. Kunzweiler, E. García and A. Somoza, CHECK Reduction types of genus-3 curves in a special stratum of their moduli space, Assoc. Women Math. Ser. 24, Cham: Springer, 115-162 (2021) Zbl 1506.14058.
[33] C. Lian, $d$-elliptic loci in genus 2 and 3, Int. Math. Res. Not. 2021, No. 20, 15959-16007 (2021) Zbl 1487.14066.
[34] A. Castañeda and M. Machado-Higuera, Nilpotent Jacobians and almost global stability, J. Dyn. Differ. Equations 33, No. 4, 1881-1896 (2021) Zbl 1479.14077.
[35] E. Ballico, Space curves, $X$-ranks and cuspidal projections, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 217-229 (2021) Zbl 1476.14066.
[36] A. Dan, On a conjecture of Harris, Commun. Contemp. Math. 23, No. 7, Article ID 2050028, 9 p. (2021) Zbl 1474.14017.
[37] Y. Zi, Geometry of the Winger pencil, Eur. J. Math. 7, No. 3, 1074-1101 (2021) Zbl 1474.14049.
[38] A. Di Lorenzo, D. Fulghesu and A. Vistoli, The integral Chow ring of the stack of smooth nonhyperelliptic curves of genus three, Zbl 1473.14009 Trans. Am. Math. Soc. 374, No. 8, 5583-5622 (2021).
[39] S. Mandal, On the loci of morphisms from $\mathbb{P}^{1}$ to $G(r, n)$ with fixed splitting type of the restricted universal sub-bundle or quotient bundle, J. Algebra 585, 759-783 (2021) Zbl 1467.14085.
[40] E. Ballico and Ph. Ellia, The maximal genus of space curves in the range A, Albanian J. Math. 15, No. 1, 10-38 (2021) Zbl 1470.14059.
[41] A. Henni and D. Guimarães, A note on the ADHM description of Quot schemes of points on affine spaces, Int. J. Math. 32, No. 6, Article ID 2150031, 17 p. (2021) Zbl 1466.14002.
[42] M. Zhang, Biliaison of sheaves, Math. Z. 298, No. 1-2, 861-881 (2021) Zbl 1464.14047.
[43] J. Elias and M. Rossi, A constructive approach to one-dimensional Gorenstein $k$-algebras, Trans. Am. Math. Soc. 374, No. 7, 4953-4971 (2021) Zbl 1465.13020.
[44] M. Alhwaimel, On the Euler characteristics of certain moduli spaces of 1-dimensional closed subschemes, Pure Appl. Math. Q. 17, No. 1, 349-384 (2021) Zbl 1464.14008.
[45] D. Johnson, D. Oprea and R. Pandharipande, Rationality of descendent series for Hilbert and Quot schemes of surfaces. Sel. Math., New Ser. 27, No. 2, Paper No. 23, 52 p. (2021) Zbl 1461.14008.
[46] C. Peters and H. Sterk, Complete intersections of quadrics and complete intersections on Segre varieties with common specializations, Doc. Math. 26, 439-464 (2021) Zbl 1460.14013.
[47] M. Gulbrandsen, L Halle, K. Hulek and Z. Zhang, The geometry of degenerations of Hilbert schemes of points, J. Algebr. Geom. 30, No. 1, 1-56 (2021) Zbl 1461.14015.
[48] Y. Kambe and P. Lella, The Gröbner fan of the Hilbert scheme, Ann. Mat. Pura Appl. (4) 200, No. 2, 547-594 (2021) Zbl 1460.14011.
[49] M. Brion and S. Kannan, Minimal rational curves on generalized Bott-Samelson varieties, Compos. Math. 157, No. 1, 122-153 (2021) Zbl 1458.14009.
[50] C. Felisetti, A support theorem for nested Hilbert schemes of planar curves, Manuscr. Math. 164, No. 3-4, 467-488 (2021) Zbl 1457.14009.
[51] Y. Choi, H. Iliev and S. Kim, Components of the Hilbert scheme of smooth projective curves using ruled surfaces, Manuscr. Math. 164, No. 3-4, 395-408 (2021) Zbl 1456.14010.
[52] C. Lozano Huerta and T. Ryan, Ti On the position of nodes of plane curves, Bull. Aust. Math. Soc. 103, No. 1, 62-68 (2021) Zbl 1454.14077.
[53] A. van den Essen, S. Kuroda and A. Crachiola, Polynomial automorphisms and the Jacobian conjecture. New results from the beginning of the 21st century, Front. Math., Birkhäuser/Springer, Cham (2021) Zbl 1464.14065.
[54] V. Bavula, The Jacobian Conjecture $2 n$ implies the Dixmier Problem $n$, Springer Proc. Math. Stat. 317, Springer, Cham (2020) Zbl 1470.14120.
[55] J. Zahl, Counting higher order tangencies for plane curves, Comb. Probab. Comput. 29, No. 2, 310-317 (2020) Zbl 1468.14065.
[56] Z. Shen and Z. Qin, Hilbert schemes of points and quasi-modularity, Pure Appl. Math. Q. 16, No. 5, 1697-1730 (2020) Zbl 1460.14014.
[57] L. Caporaso, Enumerative geometry of plane curves, Notices Am. Math. Soc. 67, No. 6, 771-779 (2020) Zbl 1456.14069.
[58] L. Mello and F. Xavier, Dynamics, points and places at infinity, and the inversion of polynomial self-maps of $\mathbb{R}^{2}$, Expo. Math. 38, No. 3, 365-376 (2020) Zbl 1454.14149.
[59] A. Ricolfi, On the motive of the Quot scheme of finite quotients of a locally free sheaf, J. Math. Pures Appl. (9) 144, 50-68 (2020) Zbl 1451.14009.
[60] X. Chen and E. Elizondo, Zariski's conjecture and Euler-Chow series, Bol. Soc. Mat. Mex., III. Ser. 26, No. 3, 921-946 (2020) Zbl 1448.14009.
[61] A. Staal, The ubiquity of smooth Hilbert schemes, Math. Z. 296, No. 3-4, 1593-1611 (2020) Zbl 1451.14010.
[62] H. Huang, M. Michałek and E. Ventura, Vanishing Hessian, wild forms and their border VSP, Math. Ann. 378, No. 3-4, 1505-1532 (2020) Zbl 1448.14004.
[63] P. Belmans, G. Oberdieck and J. Rennemo, Automorphisms of Hilbert schemes of points on surfaces, Trans. Am. Math. Soc. 373, No. 9, 6139-6156 (2020) Zbl 1451.14008.
[64] G. Muñoz, Limit linear series for curves of compact type with three irreducible components, Commun. Algebra 48, No. 10, 4457-4482 (2020) Zbl 1451.14103.
[65] A. Ricolfi, The Hilbert scheme of hyperelliptic Jacobians and moduli of Picard sheaves, Algebra Number Theory 14, No. 6, 1381-1397 (2020) Zbl 1443.14005.
[66] S.-H. Seong, The Hilbert scheme of the Grassmannian is not connected, Commun. Algebra 48, No. 8, 3439-3446 (2020) Zbl 1442.14020.
[67] C. Lozano Huerta and T. Ryan, On the birational geometry of Hilbert schemes of points and Severi divisors, Commun. Algebra 48, No. 11, 4596-4614 (2020) Zbl 1444.14014.
[68] D. Franco and L. Lomonaco, Algebraic linkage and homological algebra, Ric. Mat. 69, No. 1, 283-292 (2020) Zbl 1442.13044.
[69] D. Bejleri, D. Ranganathan and R. Vakil, Motivic Hilbert zeta functions of curves are rational, J. Inst. Math. Jussieu 19, No. 3, 947-964 (2020) Zbl 1442.14085.
[70] K. Palka and T. Pełka, Classification of planar rational cuspidal curves, II: Log del Pezzo models, Proc. Lond. Math. Soc. (3) 120, No. 5, 642-703 (2020) Zbl 1485.14055.

## SCOTT NOLLET

[71] D. Chen, Positivity of divisor classes on the strata of differentials, Q. J. Math. 71, No. 1, 247-256 (2020) Zbl 1440.14028.
[72] E. Ballico, K. Chung and S. Huh, Curves on Segre threefolds, Forum Math. 32, No. 1, 63-78 (2020) Zbl 1436.14009.
[73] E. Ballico, C. Fontanari and C. Keem, On the Hilbert scheme of linearly normal curves in $\mathbb{P}^{r}$ of relatively high degree, J. Pure Appl. Algebra 224, No. 3, 1115-1123 (2020) Zbl 1427.14011.
[74] A. Gholampour and M. Kool, Higher rank sheaves on threefolds and functional equations, Épijournal de Géom. Algébr., EPIGA 3, Article No. 17, 29 p. (2019) Zbl 1437.14014.
[75] V. Popov, Rational differential forms on the variety of flexes of plane cubics (English. Russian original), Russ. Math. Surv. 74, No. 3, 543-545 (2019); translation from Usp. Mat. Nauk 74, No. 3, 185-186 (2019) Zbl 1440.14163.
[76] O. Kivinen, Hecke correspondences for Hilbert schemes of reducible locally planar curves, Algebr. Geom. 6, No. 5, 530-547 (2019) Zbl 1430.14010.
[77] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky and M. Möller, Strata of $k$-differentials, Algebr. Geom. 6, No. 2, 196-233 (2019) Zbl 1440.14148.
[78] C. Voisin, Segre classes of tautological bundles on Hilbert schemes of surfaces, Algebr. Geom. 6, No. 2, 186-195 (2019) Zbl 1428.14010.
[79] M. Franciosi, Clifford index for reduced curves, Ann. Mat. Pura Appl. (4) 198, No. 6, 2167-2181 (2019) Zbl 1444.14057.
[80] D. Agostini, A. Küronya and V. Lozovanu, Higher syzygies of surfaces with numerically trivial canonical bundle, Math. Z. 293, No. 3-4, 1071-1084 (2019) Zbl 1444.14069.
[81] H. Nasu, Obstructions to deforming curves on a prime Fano 3-fold, Math. Nachr. 292, No. 8, 17771790 (2019) Zbl 1427.14012.
[82] J. Jelisiejew, Elementary components of Hilbert schemes of points, J. Lond. Math. Soc., II. Ser. 100, No. 1, 249-272 (2019) Zbl 1441.14023.
[83] C. Keem and Y.-H. Kim, On the Hilbert scheme of linearly normal curves in $\mathbb{P}^{4}$ of degree $d=g+1$ and genus $g$, Arch. Math. 113, No. 4, 373-384 (2019) Zbl 1423.14028.
[84] D. Hyeon and H. Park, Grothendieck-Plücker images of Hilbert schemes are degenerate, Proc. Edinb. Math. Soc., II. Ser. 62, No. 1, 47-60 (2019) Zbl 1420.14010.
[85] C. Keem, Y.-H. Kim and A. Lopez, Irreducibility and components rigid in moduli of the Hilbert scheme of smooth curves, Math. Z. 292, No. 3-4, 1207-1222 (2019) Zbl 1423.14029.
[86] L. Scala, Singularities of the isospectral Hilbert scheme, Commun. Algebra 47, No. 9, 3614-3628 (2019) Zbl 1428.14008.
[87] S. Tanimoto and A. Várilly-Alvarado, Kodaira dimension of moduli of special cubic fourfolds, J. Reine Angew. Math. 752, 265-300 (2019) Zbl 1439.14118.
[88] A. Piedra, A partial description of the Chow variety of 1-cycles of degree 3 in $\mathbb{P}^{3}$, Bol. Soc. Mat. Mex., III. Ser. 25, No. 1, 21-51 (2019) Zbl 1412.14004.
[89] A. Zamora, Some remarks on the Wiman-Edge pencil, Proc. Edinb. Math. Soc., II. Ser. 61, No. 2, 401-412 (2018) Zbl 1420.14062.
[90] J. Frías-Medina and A. Zamora, Some remarks on Humbert-Edge's curves, Eur. J. Math. 4, No. 3, 988-999 (2018) Zbl 1423.14202.
[91] I. Dolgachev, B. Farb and E. Looijenga, Geometry of the Wiman-Edge pencil. I: Algebro-geometric aspects, Eur. J. Math. 4, No. 3, 879-930 (2018) Zbl 1423.14185.
[92] P. Gallardo, C. Lozano Huerta and B. Schmidt, Families of elliptic curves in $\mathbb{P}^{3}$ and Bridgeland stability, Mich. Math. J. 67, No. 4, 787-813 (2018) Zbl 1411.14027.
[93] O. Benoist, Complete families of smooth space curves and strong semistability, Math. Nachr. 291, No. 16, 2354-2366 (2018) Zbl 1405.14078.
[94] V. Beorchia, P. Lella and E. Schlesinger, The maximum genus problem for locally Cohen-Macaulay space curves, Milan J. Math. 86, No. 2, 137-155 (2018) Zbl 1405.14009.
[95] E. Ballico and S. Huh, Double lines on quadric hypersurfaces, Tohoku Math. J. (2) 70, No. 3, 447-473 (2018) Zbl 1405.14077.
[96] A. Henni, Abdelmoubine and M. Jardim, Commuting matrices and the Hilbert scheme of points on affine spaces, Adv. Geom. 18, No. 4, 467-482 (2018) Zbl 1403.14015.
[97] J. Rennemo, Homology of Hilbert schemes of points on a locally planar curve, J. Eur. Math. Soc. (JEMS) 20, No. 7, 1629-1654 (2018) Zbl 1409.14011.
[98] B. Xia, Hilbert scheme of twisted cubics as a simple wall-crossing, Trans. Am. Math. Soc. 370, No. 8, 5535-5559 (2018) Zbl 1390.14059.
[99] X. Pan, Spaces of conics on low degree complete intersections, Trans. Am. Math. Soc. 370, No. 8, 5381-5400 (2018) Zbl 1390.14022.
[100] W. Niu, Mather-Jacobian singularities under generic linkage, Trans. Am. Math. Soc. 370, No. 6, 4015-4028 (2018) Zbl 1390.14015.
[101] Y. Choi, H. Iliev and S. Kim, Reducibility of the Hilbert scheme of smooth curves and families of double covers, Taiwanese J. Math. 21, No. 3, 583-600 (2017) Zbl 1390.14019.
[102] J.-C. Hsiao, Multigraded Hilbert schemes parametrizing ideals in the Weyl algebra, Rocky Mt. J. Math. 47, No. 8, 2675-2692 (2017) Zbl 1393.14004.
[103] K. Chung and H.-B. Moon, Chow ring of the moduli space of stable sheaves supported on quartic curves, Q. J. Math. 68, No. 3, 851-887 (2017) Zbl 1387.14030.
[104] A. Dan, On generically non-reduced components of Hilbert schemes of smooth curves, Math. Nachr. 290, No. 17-18, 2800-2814 (2017) Zbl 1387.14027.
[105] X. Sun, Images of derivations of polynomial algebras with divergence zero, J. Algebra 492, 414-418 (2017) Zbl 1386.14208.
[106] M. Huibregtse, Some elementary components of the Hilbert scheme of points, Rocky Mt. J. Math. 47, No. 4, 1169-1225 (2017) Zbl 1386.14023.
[107] K. Palka and T. Pełka, Classification of planar rational cuspidal curves I. $\mathbb{C}^{* *}$-fibrations, Proc. Lond. Math. Soc. (3) 115, No. 3, 638-692 (2017) Zbl 1375.14107.
[108] M. Jardim, M. Maican, and A. Tikhomirov, Moduli spaces of rank 2 instanton sheaves on the projective space, Pac. J. Math. 291, No. 2, 399-424 (2017) Zbl 1457.14025.
[109] E. Adamus, P. Bogdan, Paweł, T. Crespo and Z. Hajto, An effective study of polynomial maps, J. Algebra Appl. 16, No. 8, Article ID 1750141, 13 p. (2017) Zbl 1371.14066.
[110] A. Alzati and R. Re, Irreducible components of Hilbert schemes of rational curves with given normal bundle, Algebr. Geom. 4, No. 1, 79-103 (2017) Zbl 1369.14066.
[111] P. Brustenga i Moncusí, On the universal scheme of $r$-relative clusters of a family, Commun. Algebra 45, No. 6, 2708-2725 (2017) Zbl 1373.14012.
[112] C. Keem and Y.-H. Kim, Irreducibility of the Hilbert scheme of smooth curves in $\mathbb{P}^{3}$ of degree $g$ and genus $g$, Arch. Math. 108, No. 6, 593-600 (2017) Zbl 1366.14030.
[113] H. Derksen, A. van den Essen and W. Zhao, The Gaussian moments conjecture and the Jacobian conjecture, Isr. J. Math. 219, No. 2, 917-928 (2017) Zbl 1365.14082.
[114] W.-P. Li and Z. Qin, The cohomological crepant resolution conjecture for the Hilbert-Chow morphisms, J. Differ. Geom. 104, No. 3, 499-557 (2016) Zbl 1355.14006.
[115] Z. Ran, Structure of the cycle map for Hilbert schemes of families of nodal curves, Isr. J. Math. 215, No. 2, 669-711 (2016) Zbl 1356.14008.
[116] I. Setayesh, Relative Hilbert scheme of points, J. Math. Soc. Japan 68, No. 3, 1325-1356 (2016) Zbl 1354.14009.
[117] Z. Wang, Tautological integrals on symmetric products of curves, Acta Math. Sin., Engl. Ser. 32, No. 8, 901-910 (2016) Zbl 1365.14010.
[118] P. Lella and M. Roggero, On the functoriality of marked families, J. Commut. Algebra 8, No. 3, 367-410 (2016) Zbl 1348.14010.
[119] Z. Qin and Y. Tu, The nef cones of and minimal-degree curves in the Hilbert schemes of points on certain surfaces, Pac. J. Math. 284, No. 2, 439-453 (2016) Zbl 1348.14011.
[120] E. Ballico, Curves contained in a hyperplane section of a general quintic 3-fold, Bull. Inst. Math., Acad. Sin. (N.S.) 11, No. 2, 393-399 (2016) Zbl 1343.14048.
[121] D. Yan and G. Tang, Some remarks on polynomial maps, Commun. Algebra 44, No. 4, 1379-1389 (2016) Zbl 1342.14125.
[122] J. Brachat, P. Lella, B. Mourrain, and M. Roggero, Extensors and the Hilbert scheme, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 16, No. 1, 65-96 (2016) Zbl 1342.14008.
[123] L. Song, On the universal family of Hilbert schemes of points on a surface, J. Algebra 456, 348-354 (2016) Zbl 1351.14002.
[124] A. Bernardi, A. Gimigliano and M. Idà, On parameterizations of plane rational curves and their syzygies, Math. Nachr. 289, No. 5-6, 537-545 (2016) Zbl 1342.14064.
[125] H. Kim, The relative Hilbert scheme of projection morphisms, Int. J. Algebra Comput. 26, No. 1, 157-170 (2016) Zbl 1359.14003.
[126] J. Sierra, The smooth surfaces in $\mathbb{P}^{4}$ with few apparent triple points, Commun. Contemp. Math. 18, No. 1, Article ID 1550013, 15 p. (2016) Zbl 1332.14067.
[127] Y. Burman and S. Lvovski, On projections of smooth and nodal plane curves, Mosc. Math. J. 15, No. 1, 31-48 (2015) Zbl 1338.14033.
[128] P.-E. Chaput and L. Evain, On the equivariant cohomology of Hilbert schemes of points in the plane, Ann. Inst. Fourier 65, No. 3, 1201-1250 (2015) Zbl 1329.14015.
[129] J. Vallès, Free divisors in a pencil of curves, J. Singul. 11, 190-197 (2015) Zbl 1319.14039.
[130] Y. Sōma and M. Watari, The punctual Hilbert schemes for the curve singularities of type $A_{2 d}$, J. Singul. 11, 152-163 (2015) Zbl 1319.14006.
[131] A. van den Essen and R. Lipton, A p-adic approach to the Jacobian conjecture, J. Pure Appl. Algebra 219, No. 7, 2624-2628 (2015) Zbl 1311.14058.
[132] A. Borisov, On the Stein factorization of resolutions of two-dimensional Keller maps, Beitr. Algebra Geom. 56, No. 1, 299-312 (2015) Zbl 1314.14111.
[133] R. Hartshorne, P. Lella and E. Schlesinger, Smooth curves specialize to extremal curves, Math. Ann. 361, No. 1-2, 459-476 (2015) Zbl 1323.14021.
[134] D. Yan and G. Tang, Some remarks on linear triangularizability, Linear Multilinear Algebra 63, No. 1, 132-140 (2015) Zbl 1317.14135.
[135] Nguyen, Van Chau Jacobian pairs of two rational polynomials are automorphisms. (English) Zbl 1307.14087 Vietnam J. Math. 42, No. 3, 401-406 (2014).
[136] F. Cioffi and R. Di Gennaro, When the positivity of the $h$-vector implies the Cohen-Macaulay property, Ric. Mat. 63, No. 2, 195-209 (2014) Zbl 1304.14062.
[137] A. Fernandes, C. Maquera, and J. Venato-Santos, Jacobian Conjecture and semi-algebraic maps, Math. Proc. Camb. Philos. Soc. 157, No. 2, 221-229 (2014) Zbl 1305.14030.
[138] M. De Bondt and D. Yan, Triangularization properties of power linear maps and the structural conjecture, Ann. Pol. Math. 112, No. 3, 247-266 (2014) Zbl 1309.14052.
[139] H. Nakajima, Refined Chern-Simons theory and Hilbert schemes of points on the plane, Contemporary Mathematics 610, 305-331 (2014) Zbl 1298.14008.
[140] M. De Bondt, Symmetric Jacobians, Cent. Eur. J. Math. 12, No. 6, 787-800 (2014) Zbl 1307.14086.
[141] S. Matsutani and E. Previato, Jacobi inversion on strata of the Jacobian of the $C_{r s}$ curve $y^{r}=f(x)$ II, J. Math. Soc. Japan 66, No. 2, 647-692 (2014) Zbl 1297.14050.
[142] T. Ekedahl and R. Skjelnes, Recovering the good component of the Hilbert scheme, Ann. Math. (2) 179, No. 3, 805-841 (2014) Zbl 1300.14004.
[143] G. Casnati and R. Notari, On the Gorenstein locus of the punctual Hilbert scheme of degree 11, J. Pure Appl. Algebra 218, No. 9, 1635-1651 (2014) Zbl 1287.13013.
[144] M. de Cataldo, T. Hausel, and L. Migliorini, Exchange between perverse and weight filtration for the Hilbert schemes of points of two surfaces, J. Singul. 7, 23-38 (2013) Zbl 1304.14011.
[145] J. Migliore and U. Nagel, Glicci ideals, Compos. Math. 149, No. 9, 1583-1591 (2013) Zbl 1284.13020.
[146] J. Kollár, Grothendieck-Lefschetz type theorems for the local Picard group, J. Ramanujan Math. Soc. 28A, Spec. Iss., 267-285 (2013) Zbl 1327.14045.
[147] P. Lella, and E. Schlesinger, The Hilbert schemes of locally Cohen-Macaulay curves in $\mathbb{P}^{3}$ may after all be connected, Collect. Math. 64, 363-372 (2013) Zbl 1282.14009.
[148] A. Ragusa and G. Zappalà, On the weak Lefschetz property for Hilbert functions of almost complete intersections, Collect. Math. 64, 73-83 (2013) Zbl 1282.13032.
[149] J. Kleppe, Liaison invariants and the Hilbert scheme of codimension 2 subschemes in $\mathbb{P}^{n+2}$, Progress in Mathematics 280, 63-101 (2010) Zbl 1200.14098.
[150] J.-M. Couveignes, Linearizing torsion classes in the Picard group of algebraic curves over finite fields, J. Algebra 321, No. 8, 2085-2118 (2009) Zbl 1168.14007.
[151] L. García, Pencils on double coverings of curves, Arch. Math. 92, 35-43 (2009) Zbl 1165.14027.
[152] S. Matsutani and E. Previato, Jacobi inversion on the strata of the Jacobian of the $C_{r, s}$ curve $y^{r}=f(x)$, J. Math. Soc. Japan 60, 1009-1044 (2008) Zbl 1160.14018.
[153] L. Tráng, Simple rational polynomials and the Jacobian conjecture, Publ. Res. Inst. Math. Sci. 44, 641-659 (2008) Zbl 1152.14050.
[154] H. Iliev, On the irreducibility of the Hilbert scheme of curves in $\mathbb{P}^{5}$, Commun. Algebra 36, 1550-1564 (2008) Zbl 1144.14020.
[155] R. Peretz, The Jacobian Variety, Acta Math. Vietnam. 32, 177-187 (2007) Zbl 1140.14050.

