MATHEMATICAL REVIEWS

SCOTT NOLLET

References

[1] U. Bruzzo and W. Montoya, Codimension bounds for the Noether-Lefschetz components for toric varieties, Eur. J. Math. 8 (2022), no. 3, 806-814; MR4498814.
[2] C. Voisin, Schiffer variations and the generic Torelli theorem for hypersurfaces, Compos. Math. 158 (2022), no. 1, 89-122; MR4379048.
[3] R. Skjelnes and G. Saeden Stahl, Explicit projective embeddings of standard opens of the Hilbert scheme of points, J. Algebra 590 (2022) 254-276; MR4325832.
[4] B. Osserman, A concise introduction to algebraic varieties, Grad. Stud. Math. 216, American Mathematical Society, Providence, RI, 2021, xvi+259 pp.; MR4423371.
[5] N. Arbesfeld, K-theoretic Donaldson-Thomas theory and the Hilbert scheme of points on a surface, Algebr. Geom. 8 (2021), no. 5, 587-625; MR4371541.
[6] A. Schmitt, Relative geometric invariant theory, Enseign. Math. 67 (2021), no. 3-4, 301-330; MR4344783.
[7] R. Lercier, Q. Liu, E. Lorenzo García and C. Ritzenthaler, Reduction type of smooth plane quartics, Algebra Number Theory 15 (2021), no. 6, 1429-1468; MR4324830.
[8] A. Negut, G. Oberdieck and Q. Yin, Motivic decompositions for the Hilbert scheme of points of a K3 surface, J. Reine Angew. Math. 778 (2021) 65-95; MR4308613.
[9] M. Galeotti and S. Perna, Moduli spaces of abstract and embedded Kummer varieties, Internat. J. Math. 32 (2021), Paper No. 2150054, 28 pp.; MR4300443.
[10] G. Codogni, L. Tasin and F. Viviani, On some modular contractions of the moduli space of stable pointed curves, Algebra Number Theory 15 (2021) 1245-1281; MR4283103.
[11] K. Heinrich, R. Skjelnes and J. Stevens, The space of twisted cubics, Épijournal Géom. Algébrique 5 (2021), Art. 10, 22 pp.; MR4275259.
[12] L. Evain and M. Lederer, Biahnicki-Birula schemes in Hilbert schemes of points and monic functors, Épijournal Géom. Algébrique 5 (2021) Art. 7, 17 pp.; MR4275256.
[13] L. Migiorini, V. Shende and F. Viviani, A support theorem for Hilbert schemes of planar curves, II, Compos. Math. 157 (2021) 835-882; MR4253138.
[14] J. Kopper, The nef cone of the Hilbert scheme of points on rational elliptic surfaces and the cone conjecture, Canad. Math. Bull. 64 (2021), 216-227; MR4243005.
[15] N. Bonala and S. Pattanayak, On the torus quotients of Schubert varieties, Internat. J. Math. 32 (2021), Paper No. 2150012, 26 pp.; MR4236640.
[16] G. Ouchi, Hilbert schemes of two points on K3 surfaces and certain rational cubic fourfolds, Comm. Algebra 49 (2021), 1173-1179; MR4219868.
[17] H. Nasu, Obstructions to deforming curves on an Enriques-Fano 3-fold, J. Pure Appl. Algebra 225 (2021), Paper No. 106677, 15 pp.; MR4200813.
[18] A. Paul and R. Sebastian, Fundamental group schemes of Hilbert scheme of n points on a smooth projective surface, Bull. Sci. math. 164 (2020) 102898, 25 pp.; MR4136606.
[19] D. Lorenzini and S. Schröer, Moderately ramified actions in positive characteristic, Math. Z. 295 (2020), no. 3-4, 1095-1142; MR4125682.
[20] A Kubota, On the minimality of the invariant Hilbert scheme associated to Popov's SL(2)-variety, Proc. Japan Acad. 96, Ser. A (2020) 51-56; MR4124347.
[21] M. Maican, Moduli of sheaves supported on curves of genus four contained in a quadric surface, J. Algebra 562 (2020) 148-187; MR4123736.
[22] T. Ryan and R. Yang, Nef cones of nested Hilbert schemes of points on surfaces, Int. Math. Res. Not. $\operatorname{IMRN}(2020)$, no. 11, 3260-3294; MR4123103.
[23] D. Johnson, Universal Series for Hilbert schemes and strange duality, Int. Math. Res. Not. IMRN(2020), No. 10, 3130-3152; MR4098636.
[24] O. Debarre and A. Kuznetsov, Gushel-Mukai varieties: moduli. Internat. J. Math. 31 (2020), 2050013, 59 pp.; MR4083237
[25] J. Jelisiejew, Pathologies on the Hilbert scheme of points, Invent. Math. 220 (2020) 581-610; MR4081138.
[26] J. Hu and Z. Qin, On the numerical rational connectedness of the Hilbert schemes of 2-points on rational surfaces, Manuscripta Math. 162 (2020), 191-212; MR4079804.
[27] M. Boggi and E. Looijenga, Deforming a canonical curve inside a quadric, Int. Math. Res. Not. $\operatorname{IMRN}(2020), 367-377$; MR4073925.
[28] N. Fullarton and A. Putman, The high-dimensional cohomology of the moduli space of curves with level structures, J. Eur. Math. Soc. (JEMS) 22 (2020) 1261-1287; MR4071327.
[29] P. Koiran and M. Skomra, Intersection multiplicity of a sparse curve and a low-degree curve, J. Pure Appl. Algebra 224 (2020) 106279, 16 pp.; MR4058227
[30] C. Lee, Worst unstable points of a Hilbert scheme, J. Algebra 544 (2020), 92-124; MR4024651.
[31] K.-L. Lee, Z. Li, J. Sturm and X. Wang, Asymptotic Chow stability of toric del Pezzo surfaces, Math. Res. Lett. 26 (2019), no. 6, 1759-1787; MR4078694.
[32] R. V. Martins, D. Lara, and J. Souza, On gonality, scrolls, and canonical models of non-Gorenstein curves, Geom. Dedicata 203 (2019) 111-133; MR4027587.
[33] A. Krug, P-functor versions of the Nakajima operators, Algebr. Geom. 6 (2019) 678-715; MR4009177.
[34] I. Ganev, The wonderful compactification for quantum groups, J. London Math. Soc. (2) 99 (2019) 778-806; MR3977890.
[35] J. Horiuchi and K. Shimomoto, Normal hyperplane sections of normal schemes in mixed characteristic, Comm. Algebra 47 (2019) 2412-2425; MR3957106.
[36] P. Belmans, L. Fu and T. Raedschelders, Hilbert squares; derived categories and deformations, Selecta Math. (N.S.) 25 (2019), Art. 37, 32 pp.; MR3950704.
[37] J. Eberhardt and S. Kelly, Mixed motives and geometric representation theory in equal characteristic, Selecta Math. (N.S.) 25 (2019) Art. 30, 54 pp.; MR3935029.
[38] D. Beraldo, The topological chiral homology of the spherical category, J. Topol. 12 (2019) 684-703; MR3932939.
[39] A. Javanpeykar, K. Langlois and R. Terpereau, Horospherical stacks, Münster J. Math. 12 (2019) 1-29; MR3928080.
[40] D. Chen and Q. Chen, Spin and hyperelliptic structures of \log twisted differentials, Selecta Math. (N.S.) 25 (2019) Art. 20, 42 pp.; MR3916969.
[41] L. Caporaso and K. Christ, Combinatorics of compactified universal Jacobians, Adv. Math. 346 (2019) 1091-1136; MR3914907.
[42] J. Campbell, A resolution of singularities for Drinfeld's compactification by stable maps, J. Algebraic Geom. 28 (2019) 153-167; MR3875364.
[43] A. Neeman, The relation between Grothendieck duality and Hochschild cohomology, Hindustan Book Agency, New Delhi, 2018, 91-126; MR3930045.
[44] M. Halic, Semi-stable vector bundles on fibred varieties. Eur. J. Math. 4 (2018) 1297-1339; MR3866699.
[45] B. Hennion, Tangent Lie algebra of derived Artin stacks. J. Reine Angew. Math. 741 (2018) 1-45; MR3836141.
[46] J. Calabrese, Relative singular twisted Bondal-Orlov, Math. Res. Lett. 25 (2018) 393-414; MR3826827.
[47] R. Thomas, Notes on homological projective duality, Proc. Sympos. Pure Math. 97.1, American Mathematical Society, Providence, RI, 2018, 585-609; MR3821163.
[48] A. Krug, Remarks on the derived McKay correspondence for Hilbert schemes of points and tautological bundles, Math. Ann. 371 (2018) 461-486; MR3788855.
[49] M. Ballard, D. Deliu, D. Favero, M. Isik, L. Katzarkov, On the derived categories of degree d hypersurface fibrations, Math. Ann. 371 (2018), 337-370; MR3788850.
[50] A. du Plessis and C. T. C. Wall, The moduli space of binary quintics, Eur. J. Math. 4 (2018) 423-436; MR3769381.
[51] D. Abramovich and M. Temkin, Luna's fundamental lemma for diagonalizable groups, Algebr. Geom. 5 (2018) 77-113; MR3734110.
[52] A. Bodzenta and A. Bondal, Canonical tilting relative generators, Adv. Math. 323 (2018) 226-278; MR3725878.
[53] J. Alper, M. Fedorchuk, D. Smyth and F. van der Wyck, Second flip in the Hassett-Keel program: a local description, Compos. Math. 153 (2017), no. 8, 1547-1583; MR3705268.
[54] O. Fujino, Injectivity theorems, Adv. Stud. Pure Math. 74, Mathematical Society of Japan, Tokyo, 2017, 131-157; MR3791211.
[55] J. Heinloth, Hilbert-Mumford stability on algebraic stacks and applications to \mathcal{G}-bundles on curves, Épijournal Geom. Algébrique 1 (2017) Art. 11, 37 pp.; MR3758902
[56] L. Karzarkov, A. Noll, P. Pandit and C. Simpson, Constructing buildings and harmonic maps, Progr. in Math. 324, Birkhäuser/Springer, Cham, 2017, 203-260; MR3727562.
[57] A. Rizzardo, Adjoints to a Fourier-Mukar functor, Adv. Math. 322 (2017) 83-96; MR3720794.
[58] M. Brown and I. Shipman, The McKay correspondence, tilting, and rationality, Michigan Math. J. 66 (2017) 785-811; MR3720324.
[59] T. Bridgeland and A. Maciocia, Fourier-Mukai transforms for quotient varieties, J. Geom. Phys. 122 (2017) 119-127; MR3713877.
[60] Y. Wang, Generic vanishing and classification of irregular surfaces in positive characteristics, Trans. Amer. Math. Soc. 369 (2017) 8559-8585; MR3710635.
[61] S. Arkhipov and T. Kanstrup, Equivariant matrix factorizations and Hamiltonian reduction, Bull. Korean Math. Soc. 54 (2017), no. 5, 1803-1825; MR3708812.
[62] J. Alper, M. Fedorchuk, D. Smyth and F. van der Wyck, Second flip in the Hassett-Keel program: a local description Compos. Math. 153 (2017), no. 8, 1547-1583; MR3705268.
[63] L. Migliorini, Recent results and conjectures on the non abelian Hodge theory of curves, Boll. Unione Mat. Ital. 10 (2017), no. 3, 467-485; MR3691809.
[64] P. Gallardo and E. Routis, Wonderful compactifications of the moduli space of points in affine and projective space Eur. J. Math. 3 (2017), no. 3, 520-564; MR3687430.
[65] D. Arinkin, A. Căldăraru and M. Hablicsek, Derived intersections and the Hodge theorem Algebr. Geom. 4 (2017), no. 4, 394-423; MR3683500.
[66] J. Calabrese, A remark on generators of $D(X)$ and flags, Manuscripta Math. 154 (2017), no. 1-2, 275-278; MR3682214.
[67] I. Cheltsov, Worst singularities of plane curves of given degree, J. Geom. Anal. 27 (2017), no. 3, 2302-2338; MR3667432.
[68] D. Calaque, T. Pantev, B. Toën, M. Vaquié and G. Vezzosi, Shifted Poisson structures and deformation quantization, J. Topol. 10 (2017), no. 2, 483-584; MR3653319.
[69] M. Dunajski and R. Penrose, On the quadratic invariant of binary sextics, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 435-445; MR3628200.
[70] M. Lahoz, E. Macrì and P. Stellari, Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane, Progr. Math. 320, Birkhäuser/Springer (2017) 155-175; MR3616010.
[71] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Invent. Math. 207 (2017), no. 2, 597-695; MR3595935.
[72] P. Goyal and S. Pattanayak, Projective normality of G.I.T. quotient varieties modulo finite groups, Comm. Algebra 45 (2017), no. 7, 2996-3004; MR3594575.
[73] D. Abramovich and M. Temkin, Torification of diagonalizable group actions on toroidal schemes, J. Algebra 472 (2017), 279-338; MR3584880.
[74] A. Polishchuk, Moduli of curves, Gröbner bases, and the Krichever map, Adv. Math. 305 (2017), 682-756; MR3570146.
[75] M. Heusener, V. Muñoz and J. Porti, The SL(3, $\mathbb{C})$-character variety of the figure eight knot, Illinois J. Math. 60 (2016), no. 1, 55-98; MR3665172.
[76] M. Popa, Kodaira-Saito vanishing and applications, Enseign. Math. 62 (2016), no. 1-2, 49-89; MR3605809.
[77] A. Isaev, On the contravariant of homogeneous forms arising from isolated hypersurface singularities, Internat. J. Math. 27 (2016), no. 12, 1650097, 14 pp.; MR3575921.
[78] D. Hyeon and J. Kim, A state polytope decomposition formula Proc. Edinb. Math. Soc. (2) 59 (2016), no. 3, 759-776; MR3572769.
[79] A. Polishchuk, Homogeneity of cohomology classes associated with Koszul matrix factorizations Compos. Math. 152 (2016), no. 10, 2071-2112; MR3570001.
[80] D. Halpern-Leistner and I. Shipman, Autoequivalences of derived categories via geometric invariant theory Adv. Math. 303 (2016), 1264-1299; MR3552550.
[81] G. Vezzosi, Quadratic forms and Clifford algebras on derived stacks, Adv. Math. 301 (2016) 161-203; MR3539372.
[82] A. Zamora, Harder-Narasimhan filtration for rank 2 tensors and stable coverings, Proc. Indian Acad. Sci. 126 (2016) 305-327; MR3531851.
[83] J. Alper, A. V. Asaev and N. G. Kruzhilin, Associated forms of binary quartics and ternary cubics, Transform. Groups 21 (2016) 593-618; MR3531742.
[84] R. Weissauer, Vanishing theorems for constructible sheaves on abelian varieties over finite fields, Math. Ann. 365 (2016) 559-578; MR3498921.
[85] Z. Wei, The full exceptional collections of categorical resolutions of curves, J. Pure Appl. Algebra 220 (2016) 3332-3344; MR3486305.
[86] S. Basu and R. Mukherjee, Enumeration of curves with one singular point, J. Geom. Phys. 104 (2016) 175-203; MR3483831.
[87] J. Shin, A bound for the Milnor sum of projective plane curves in terms of GIT, J. Korean Math. Soc. 53 (2016) 461-473; MR3465921.
[88] A. Deopurkar, M. Fedorchuk and D. Swinarski, Toward GIT stability of syzygies of canonical curves, Algebraic Geometry 3 (2016) 1-22; MR3455418.
[89] V. Kulikov and E. Shustin, On rigid plane curves, Eur. J. Math. 2 (2016) 208-226; MR3454098.
[90] J. Kollár, The Lefschetz property for families of curves, Contemp. Math. 654, Centre Rech. Math. Proc., American Mathematical Society, Providence, RI, 2015, 143-154; MR3477544.
[91] J. Hall and D. Rydh, Algebraic groups and compact generation of their derived categories of representations, Indiana Univ. Math. J. 64 (2015) 1903-1923; MR3436239.
[92] V. Kulikov and E. Shustin, Duality of planar and spacial curves: new insight, Eur. J. Math. 1 (2015) 462-482; MR3401901.
[93] M. De Cataldo and L. Migliorini, The projectors of the decomposition theorem are motivated, Math. Res. Lett. 22, (2015) 1061-1088; MR3391877.
[94] S. Estrada, The derived category of quasi-coherent modules on an Artin stack via model structures, Int. Math. Res. Not. 2015 (2015) 6411-6432; MR3384483.
[95] A. Bapat, Torus actions and tensor products of intersection cohomology, Pacific J. Math. 276 (2015) 19-34; MR3366026.
[96] A. Efimov and L. Positselski, Coherent analogues of matrix factorizations and relative singular categories, Algebra Number Theory 9 (2015) 1159-129; MR3366002.
[97] B. Köck and J. Tait, Faithfulness of Actions on Riemann-Roch spaces, Canad. J. Math. 67 (2015) 848-869; MR3361016.
[98] N. Budur and B. Wang, Cohomology jump loci of quasi-projective varieties. Ann. Sci. Éc. Norm. Supér. (4) 48 (2015) 227-236; MR3335842.
[99] D. Halpern-Leistner, The derived category of a GIT quotient, J. Amer. Math. Soc. 28 (2015) 871-912; MR3327537.
[100] W. Donovan and E. Segal, Mixed braid group actions from deformations of surface singularities, Comm. Math. Phys. 335 (2015) 497-543; MR3314511.
[101] A. Hefez, M.E. Hernandes and M.E. Rodrigues Hernandes, The analytic classification of plane curves with two branches, Math. Z. 279 (2015) 509-520; MR3299865.
[102] T. Gómez, I. Sols and A. Zamora, A GIT interpretation of the Harder-Narisimhan filtration, Rev. Mat. Complut. 28 (2015) 169-190; MR3296731.
[103] S. Casalaina-Martin, D. Jensen and R. Laza, Log canonical models and variation of GIT for genus 4 canonical curves, J. Algebraic Geom. 23 (2014) 727-764; MR3263667.
[104] Nguyen Tat Thang, Admissibility of local systems for some classes of line arrangements, Canad. Math. Bull. 57 (2014) 658-672; MR3239130.
[105] R. Fisette and A. Polishchuk, \mathbf{A}_{∞}-algebras associated with curves and rational functions on $\mathcal{M}_{g, g}$, I, Compos. Math. 150 (2014) 621-667; MR3200671.
[106] R. Di Gennaro, G. Ilardi and J. Vallès, Singular hypersurfaces characterizing the Lefschetz properties, J. Lond. Math. Soc. (2) 89 (2014) 194-212; MR3174740.
[107] E. Gorsky, The equivariant Euler characteristic of moduli spaces of curves, Adv. Math. 250 (2014) 588-595; MR3122177.
[108] D. Kedzierski and H. Meltzer, Schofield induction for sheaves on weighted projective lines, Comm. Algebra 41 (2013) 2033-2039; MR3225254.
[109] F. Laytimi and W. Nahm, A general vanishing theorem, Proc. Indian Acad. Sci. (Math. Sci.) 123 (2013) 479-490; MR3146602.
[110] M. Lelli-Chiesa, Green's conjecture for curves on rational surfaces with an anticanonical pencil, Math. Z. 275 (2013) 899-910; MR3127041.
[111] J. Migliore and U. Nagel, Numerical Macaulification, Clay Math. Proc. 18, American Mathematical Society, Providence, RI, 2013, 509-534; MR3114954.
[112] M. Fedorchuk and D. Smyth, Stability of genus five canonical curves, Clay Math. Proc. 18, American Mathematical Society, Providence, RI, 2013, 281-310; MR3114945.
[113] C. Faber, Tautological algebras of moduli spaces of curves, IAS/Park City Math. Ser. 20, American Mathematical Society, Providence, RI, 2013, 197-219; MR3114686.
[114] N. Giansiracusa, Conformal blocks and rational normal curves, J. Algebraic Geom. 22 (2013) 773793; MR3084722.
[115] D. I. Smyth, Towards a classification of modular compactificiations of $\mathcal{M}_{g, n}$, Invent. Math. 192 (2013) 459-503; MR3044128.
[116] E. Gorsky, Arc spaces and DAHA representations, Sel. Math. (N.S.) 19 (2013) 125-140; MR3022754.
[117] J. Alper, M. Fedorchuk and D. Smyth, Finite Hilbert stability of (bi)canonical curves, Invent. Math. 191 (2013) 671-718; MR3020172.
[118] B. Bhatt, Derived splinters in positive characteristic, Compositio Math. 148 (2012) 1757-1786; MR2999303.
[119] V. Alexeev and D. Swinarski, Nef divisors on $\bar{M}_{0, n}$ from GIT, EMS Ser. Congr. Rep., European Mathematical Society (EMS), Zürich, 2012, 1-21; MR2987650.
[120] B. Howard, J. Millson, A. Snowden and R. Vakil, The ideal for relations for the ring of invariants of n points on the line: integrality results, Comm. Algebra 40 (2012) 3884-3902; MR2982905.
[121] N. Giansiracusa and A. Gibney, The cone of type A, level 1, conformal blocks divisors, Adv. Math. 231 (2012) 798-814; MR2955192.
[122] N. Pagani, The orbifold cohomology of moduli of hyperelliptic curves, Int. Math. Res. Not. IMRN 2012, no. 10, 2163-2178; MR2923163.
[123] S. Giuffrida, R. Maggioni and R. Re, Multiplications of maximal rank in the cohomology of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, Collect. Math. 63 (2012) 1-10; MR2887107.
[124] M. De Cataldo, The perverse filtration and the Lefschetz hyperplane theorem, II, J. Algebraic Geom. 21 (2012) 305-345; MR2877437.
[125] B. Howard, J. Millson, A. Snowden and R. Vakil, The ideal of relations for the ring of invariants of n points on the line, J. Eur. Math. Soc. 14 (2012) 1-60; MR2862033.
[126] Y.-H. Kiem and H.-B. Moon, Moduli spaces of weighted pointed stable rational curves via GIT, Osaka J. Math. 48 (2011) 1115-1140; MR2871297.
[127] U. Bhosle, Coherent systems on a nodal curve of genus one, Math. Nachr. 284 (2011) 1829-1845; MR2838285.
[128] T. Shirane, Families of Galois closure curves for plane quintic curves, J. Algebra 342 (2011) 175-196; MR2824536.
[129] M. Radulescu, S. Radulescu and E. Cabral Balreira, A generalization of the Fujisawa-Kuh global inversion theorem, Math. Anal. Appl. 382 (2011) 559-564; MR2810814.
[130] I. Morrison and D. Swinarski, Gröbner techniques for low-degree Hilbert stability, Exp. Math. 20 (2011) 34-56; MR2802723.
[131] F. Fontenele and F. Xavier, Good shadows, dynamics and convex hulls of complete submanifolds, Asian J. Math. 15 (2011), no. 1, 9-31; MR2786463.
[132] F. Laytimi, Generalization of Peternell, Le Potier and Schneider vanishing theorem, Manuscripta Math. 134 (2011) 485-492; MR2765722.
[133] A. Gibney and D. Maclagen, Equations for Chow and Hilbert quotients, Algebra and Number Theory 4 (2010) 855-885; MR2776876.
[134] F. Laytimi and D. S. Nagaraj, Vanishing theorems for vector bundles generated by sections, Kyoto J. Math. 50 (2010) 469-479; MR2723859.
[135] F. Fontenele and F. Xavier, A Riemannian Bieberbach estimate, J. Differential Geometry 85 (2010) 1-14; MR2719407.
[136] D. Avritzer, H. Lange and F. Ribeiro, Torsion-free sheaves on nodal curves and triples, Bull. Braz. Math. Soc. (N.S.) 41 (2010) 421-447; MR2718150.
[137] M. Andrea A. de Cataldo and L. Migliorini, The perverse filtration and the Lefschetz hyperplane theorem, Ann. of Math. (2) 171 (2010) 2089-2113; MR2680404.
[138] D. Hyeon and I. Morrison, Stability of tails and 4-canonical models, Math. Res. Lett. 17 (2010) 721-729; MR2661175.
[139] M. Perling and G. Trautmann, Equivariant primary decomposition and toric sheaves, Manuscripta Math. 132 (2010) 103-143; MR2609290.
[140] P. Aluffi and C. Faber, Limits of PGL(3)-translates of plane curves II, J. Pure Appl. Algebra 214 (2010) 526-547; MR2577661.
[141] P. Aluffi and C. Faber, Limits of PGL(3)-translates of plane curves I, J. Pure Appl. Algebra 214 (2010) 548-564; MR2577660.
[142] E. Balreira, Foliations and global inversion, Comment. Math. Helv. 85 (2010) 73-93; MR2563681.
[143] E. Ballico, One-dimensional cones, Int. J. Pure Appl. Math. 56 (2009) 605-611; MR2583729.
[144] J. Vatne, Multiple structures and Hartshorne's conjecture, Comm. Algebra 37 (2009) 3861-3873; MR2573224.
[145] I. Coskun and J. Starr, Rational curves on smooth cubic hypersurfaces, Int. Math. Res. Not. IMRN 2009, no. 24, 4626-4641; MR2564370.
[146] V. Lozovanu, Regularity of smooth curves in biprojective spaces, J. Algebra 322 (2009) 2355-2365; MR2553204.
[147] Bogomolov and Y. Tschinkel, Co-fibered products of algebraic curves, Cent. Eur. J. Math. 7 (2009) 382-286; MR2534459.
[148] F. Laytimi and D. S. Nagaraj, Barth type vanishing theorem, Geom. Dedicata 141 (2009) 87-92; MR2520064.
[149] E. Ballico, Existence or non-existence of low degree spanned rank 1 torsion free sheaves on stable curves with prescribed dual graph, Int. J. Pure Appl. Math. 52 (2009) 15-25; MR2515189.
[150] E. Ballico, On the image of the canonical map of a stable pointed curve, Int. J. Pure Appl. Math. 52 (2009) 229-237; MR2514623.
[151] M. Casanellas, The minimal resolution conjecture for points on the cubic surface, Canad. J. Math. 61 (2009) 29-49; MR2488448.
[152] B. Howard, J. Millson, A. Snowdon and R. Vakil, The equations for the moduli space of n points on the line, Duke Math. J. 146 (2009) 175-225; MR2477759.
[153] F. Xavier, The global inversion problem: a confluence of many mathematical topics, Mat. Contemp. 35 (2008) 241-265; MR2584187.
[154] R. Hartshorne, I. Sabadini and E. Schlesinger, Codimension 3 arithemetically Cohen-Macaulay Gorenstein subschemes of projective N-space, Ann. Inst. Fourier, Grenoble 58 (2008) 2037-2073; MR2473628.
[155] E. Ballico, Torsion free sheaves on reducible curves with only planar singularities, Int. J. Pure Appl. Math. 48 (2008) 361-366; MR2467173.
[156] E. Baldwin, A GIT construction of moduli spaces of stable maps in positive characteristic, J. Lond. Math. Soc. (2) 78 (2008) 107-124; MR2427054.
[157] J. Vatne, Double structures on rational space curves, Math. Nachr. 281 (2008) 434-441; MR2392125.
[158] P. Ellia and A. Trambaiolli, Global generation, Rend. Istit. Mat. Univ. Trieste 39 (2007) 207-215; MR2441618.
[159] R. Di Nardo, Laudal type theorems for algebraic curves, Rend. Sem. Univ. Pol. Torino 65 (2007) 301-311; MR2378957.
[160] V. Di Gennaro and D. Franco, A speciality theorem for curves in \mathbf{P}^{5}, Geom. Dedicata 129 (2007) 89-99; MR2353985.
[161] F. Xavier, Using Gauss maps to detect intersections, Ensiegn. Math. (2) 53 (2007) 15-31; MR2343343.
[162] S. Guffroy, Dimension des familles de courbes lisses sur une surface quartique normale de \mathbf{P}^{3}, Proc. Amer. Math. Soc. 135 (2007) 3499-3505; MR2336563.
[163] A. Assi and A. Sathaye, On quasihomogeneous curves, Osaka Univ. Press, Osaka, 2007, 33-56; MR2327235.
[164] E. Ballico, Plane curves with ordinary singularities and many nodes, Int. J. Pure Appl. Math. 36 (2007) 269-271; MR2312539.
[165] E. Ballico, Quadrics over \mathbb{F}_{q} containing a linearly normal non-special curve, Int. J. Pure Appl. Math. 35 (2007) 457-461; MR2311552.
[166] E. Ballico, Bertini's theorem over a finite field for linear systems of quadrics, Int. J. Pure Appl. Math. 35 (2007) 453-455; MR2311551.
[167] E. Ballico, Base loci of homogeneous forms in the projective plane over a finite field, Int. J. Pure Appl. Math. 35 (2007) 173-176; MR2304170.
[168] E. Ballico, Number of intersections of a fixed plane curve with plane conics, Int. J. Pure Appl. Math. 35 (2007) 147-152; MR2304166.
[169] E. Ballico, Reducible space curves with good minimal free resolution in the range A, Int. Math. Forum 2 (2007) 575-582; MR2297809.
[170] Z. Teitler, On the intersection of the curves through a set of points in \mathbb{P}^{2}, J. Pure Appl. Algebra 209 (2007) 571-581; MR2293328.
[171] N. Chiarli, S. Greco and U. Nagel, Families of space curves with large cohomology, J. Algebra 307 (2007) 704-726; MR2275369.
[172] E. Ballico, Plane curves over finite fields with several multisecant lines with different contact order, Int. J. Contemp. Math. Sci. 1 (2006) 413-416; MR2287585.
[173] F. Laytimi and W. Nahm, A vanishing theorem, Nagoya Math. J. 180 (2005) 35-43; MR2186667.
[174] M. Casanellas, E. Drozd and R. Hartshorne, Gorenstein liaison and ACM sheaves, J. Reine Angew. Math. 584 (2005) 149-171; MR2155088.
[175] A. Dolcetti, Index of speciality and arithmetically Gorenstein subschemes, Adv. Geom. 5 (2005) 347-352; MR2154829.
[176] G. Molica Bisci and R. Notari, Remarks on degree 4 projective curves, J. Math. Kyoto Univ. 45 (2005) 159-182; MR2138805.
[177] E. Ballico, On the postulation of the multiples of the nodes for the generic nodal curves on general rational surfaces, Result. Math. 46 (2004) 223-226; MR2105715.
[178] G. Berhuy and F. Giordano, Essential dimension of cubics, J. Algebra 278 (2004) 199-216; MR2068074.
[179] N. Chiarli, S. Greco and U. Nagel, Normal form for space curves in a double plane, J. Pure Appl. Algebra 190 (2004) 45-57; 2043321.
[180] R. Ferraro, Linkage on arithmetically Cohen-Macaulay schemes with application to the classification of curves of maximal genus, J. Pure Appl. Algebra 188 (2004) 95-115; MR2030808.
[181] Y-H Kiem, Intersection cohomology of quotients of nonsingular varieties, Invent. Math. 155 (2004) 163-202; MR2025303.
[182] D. Perrin, La connexité asymptotique du schéma de Hilbert des courbes gauches, Ann. Univ. Ferrara Sez. VII (N.S.) 49 (2003) 183-195; MR2164996.
[183] A. Fernandes, C. Gutierrez and R. Rabanal, On local diffeomorphisms of \mathbb{R}^{n} that are injective, Qual. Theory Dyn. Syst. 4 (2004) 255-262; MR2129721.
[184] M. Casanellas and R. M. Miró-Roig, On the Lazarsfeld-Rao property for Gorenstein liaison classes, J. Pure Appl. Algebra 179 (2003) 7-12; MR1957812.
[185] F. Lang, Geometry and group structures on some cubics, Forum Geom. 2 (2002) 135-146; MR1940110.
[186] E. Ballico, N. Chiarli and S. Greco, Linearly normal curves with degenerate general hyperplane section, Hiroshima Math. J. 32 (2002) 217-228; MR1925899.
[187] S. Kovács, Logarithmic vanishing theorems and Arakelov-Parshin boundedness for singular varieties, Compositio Math. 131 (2002) 291-317; MR1905025.
[188] C. Folegatti, On linked surfaces in \mathbb{P}^{4}, Rend. Sem. Mat. Univ. Pol. Torino 59 (2001) 165-171; MR 1977103.
[189] M. Casanellas and R. M. Miró-Roig, Gorenstein liaison of divisors on standard determinantal schemes and on rational normal scrolls, J. Pure Appl. Algebra 164 (2001) 325-343; MR1857745.
[190] J. Kleppe, J. Migliore, R. Miró-Roig, U. Nagel and C. Peterson, Gorenstein liaison, complete intersection liaison invariants and unobstructedness, Mem. Amer. Math. Soc. 154 (2001), no. 732, viii+116 pp.; MR1848976.
[191] N. Manolache, Double rational normal curves with linear syzygies, Manuscripta Math. 104 (2001) 503-517; MR1836110.
[192] U. Nagel, R. Notari and M. Spreafico, On the even Gorenstein liaison classes of ropes on a line, Le Matematiche 55 (2000) 483-498; 1984215.
[193] U. Nagel, On the cohomology and genus of projective curves, Le Matematiche (Catania) 55 (2000) 339-351; MR1984205.
[194] E. Ballico, Space curves not contained in low degree surfaces in positive characteristic, Note Mat. 20 (2000) 27-33; MR1897592.
[195] K. Smith, Globally F-regular Varieties, Michigan Math. J. 48 (2000) 553-572; MR1786505.
[196] J. Chipalkatti, A generalization of Castelnuovo regularity to Grassmann varieties, Manuscripta Math. 102 (2000) 447-464; MR1785325.
[197] M. Casanellas and R. M. Miró-Roig, Gorenstein liaison of curves in P ${ }^{4}$, J. Algebra 230 (2000) 656-664; MR1775807.
[198] M.-C. Chang and H. Kim, The Euler number of certain primitive Calabi-Yau threefolds, Math. Proc. Cambridge Philos. Soc. 128 (2000) 79-86; MR1724429.
[199] R. Hartshorne, M. Martin-Deschamps and D. Perrin, Triades et familles de courbes gauches, Math. Ann. 315 (1999) 397-468; MR1725989.
[200] D. Franco and A.T. Lascu, Curves contractable in general surfaces, Lecture Notes in Pure and Appl. Math. 206, 93-116, Dekker, New York, 1999; MR1702101.
[201] Ph. Ellia and R. Hartshorne, Smooth specializations of space curves: questions and examples, Lecture Notes in Pure and Appl. Math. 206, 53-79, Marcel Dekker, Inc., New York, 1999; MR1702099.
[202] T. Fenske, Rational cuspidal plane curves of type $(d, d-4)$ with $\chi\left(\Theta_{V}\langle D\rangle\right) \leq 0$, Manuscripta Math. 98 (1999) 511-527; MR1690051.

