

2/16/Calc 2

tank problems

Last time

Strategy

①

Draw picture

② Set variable y for vertical height

③ Find end points a/b corresponding to the setup

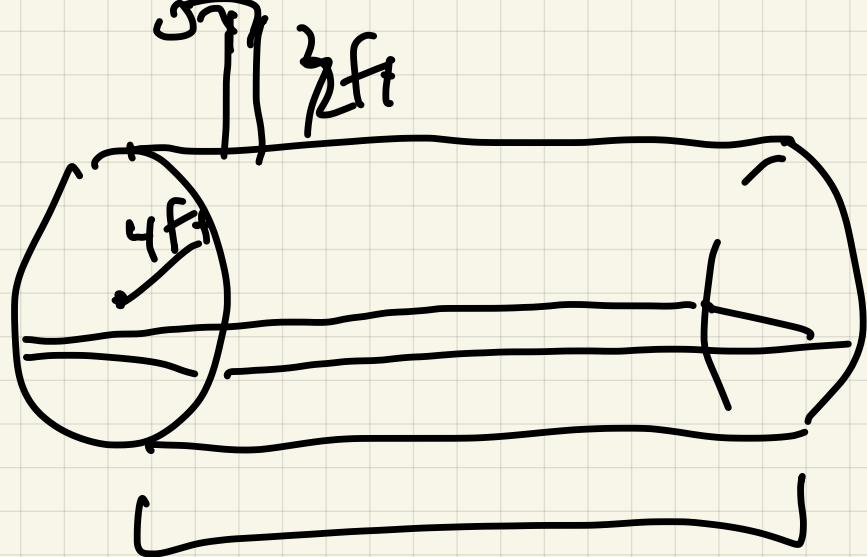
④ $A(y) = \text{cross-sectional area}$

⑤ $D(y) = \text{distance moved}$

$$W = \int_a^b A(y) D(y) dy$$

↑
density

Ex A cylindrical tank, lies on its side as shown:



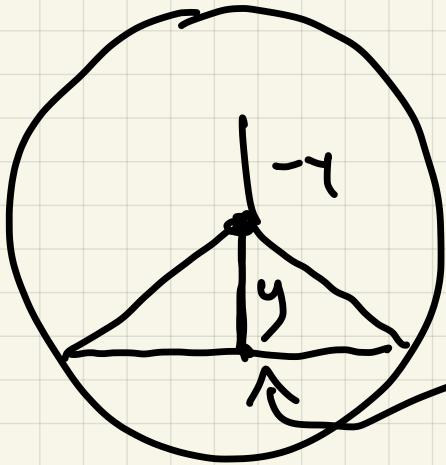
If tank is filled with oil

weighing 50 lb/ft^3 ,

How much work is done

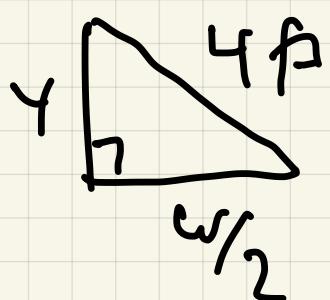
pumping oil to 2 ft above
top of tank?

Need width of cross sections



$$w = w \cdot d \cdot r$$

$y = \text{distance below center}$



$$y^2 + \left(\frac{w}{2}\right)^2 = 4^2 = 16$$

$$\left(\frac{w}{2}\right)^2 = 16 - y^2$$

$$\frac{w}{2} = \sqrt{16 - y^2}$$

$$w = 2\sqrt{16 - y^2}$$

$$A(y) = l \cdot w$$

$$= 12 - 2\sqrt{16 - y^2}$$

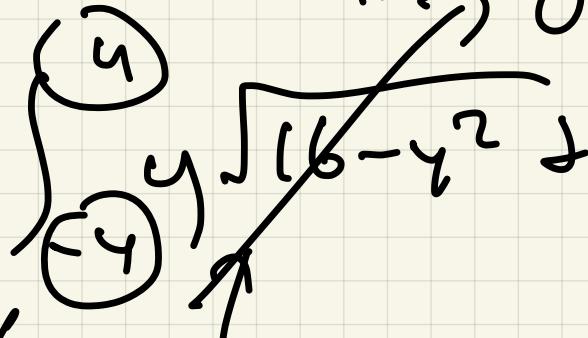
$$= 24\sqrt{16 - y^2}$$

end points: $-4 \leq y \leq 4$

$$D(y) = y + 6$$

$$W = \int_{-4}^4 (50) 24\sqrt{16 - y^2} (y + 6) dy$$

$$1200 \int_{-4}^4 (4\pi) \sqrt{16-y^2} dy$$

1200  + 1200 \int_{-4}^4 6\sqrt{16-y^2} dy

$$u = 16 - y^2$$

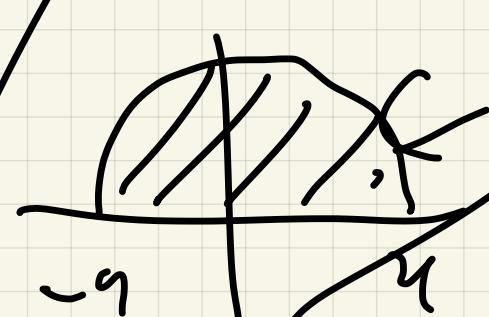
$$du = -2y dy$$

$$\frac{1}{2} du = y dy$$

$$\int u = 0$$

$$\int u = 0$$

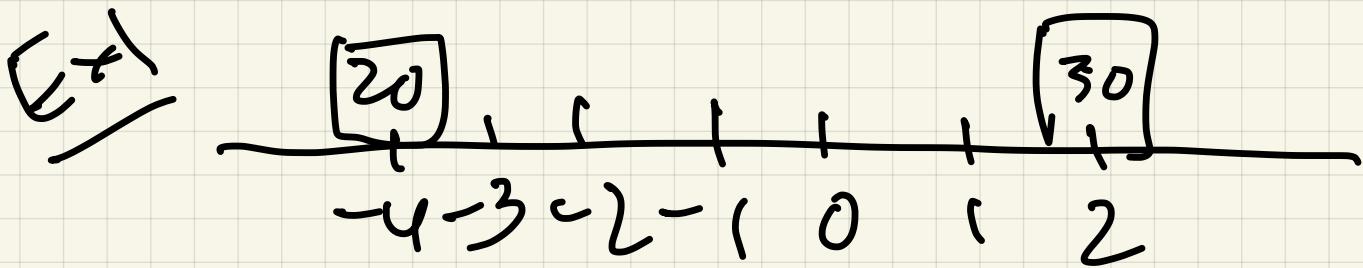
$$7200 \int_{-4}^4 \sqrt{16-y^2} dy$$

$$\int_{-4}^4 \sqrt{16-x^2} dx$$


$$7200 \pi/8 = 57,600 \pi \text{ ft-lbs}$$

§6.6 Center of mass

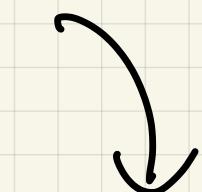
Basic idea:



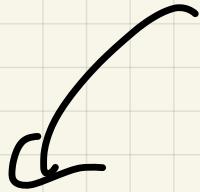
Where is balance point?

Physics: If masses m_i placed at x_i , the moment about y-axis is

$\rightarrow M_y = \sum m_i x_i$
measures tendency of system to rotate about y-axis



$$M_y > 0$$



$$M_y < 0$$

Total mass : $M = \sum m_i$

Center of mass :

$$\bar{x} = \frac{\sum m_i x_i}{M}$$

In Ex : $m_1 = -4(2) + 2(3) = -2$

$$M = 2v + 3v = 5v$$

$$\bar{x} = -\frac{2v}{5v} = -0.4$$

What if system continuous

instead of discrete?

Res
Wires

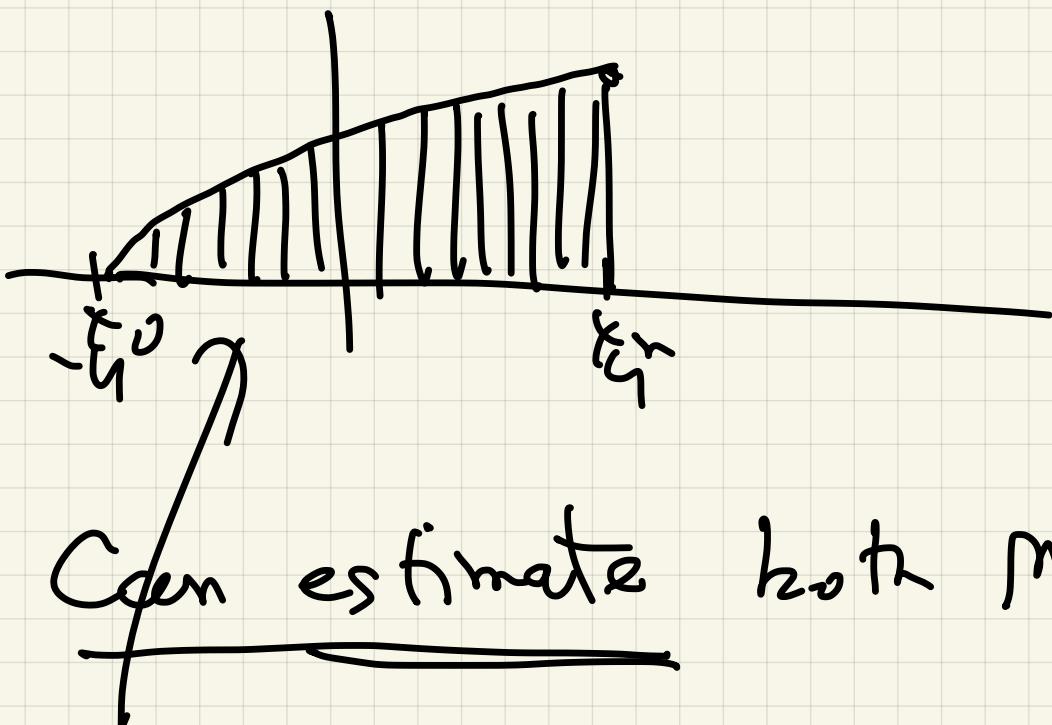
Ex 2

-4

4

Density at position x is

$$\delta(x) = \sqrt{x+4}$$



Can estimate both M_y and M

divide $[-x_0, x_n]$ into n equal pieces

$$\text{width is } \Delta x = \frac{8}{n}$$

Mass of segment $[x_i, x_{i+1}]$

location x_i

$$\text{mass} = \underbrace{x_i + 4}_{\Delta x} \Delta x = m_i$$

$$\text{Physics: } M_y \approx \sum m_i x_i$$

$$\sum_{i=1}^n (\underbrace{x_i + 4}_{\Delta x}) x_i \Delta x$$

estimates $M \approx \sum m_i \approx \sum_{i=1}^n \sqrt{x_i + y} \Delta x$

Exact values

$$M_y = \int_{-4}^4 \sqrt{x+4} \cdot x \, dx$$

$$M = \int_{-4}^4 \sqrt{x+4} \, dx$$

$$M_y = \frac{128}{15} \sqrt{2}$$

$$M = \frac{32\sqrt{2}}{3}$$

$$\Rightarrow \bar{x} = \frac{\frac{128\sqrt{2}}{15}}{\frac{32\sqrt{2}}{3}} =$$

$$\frac{3}{1} \frac{4}{\frac{15}{15}} = \frac{4}{5} = .8$$

In general If thin wire

has density $f(x)$ at position x

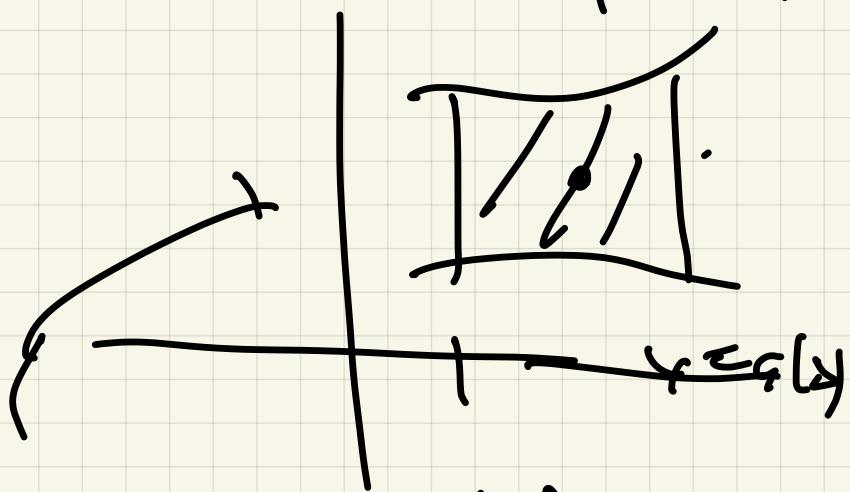
Then $M_y = \int_a^b x f(x) \, dx$

$$M = \int_a^b f(x) dx$$

$$\bar{x} = \frac{My}{M}$$

$$y = f(x)$$

Plates



2- form problem :

Discrete problem

If masses m_i are placed at positions (x_i, y_i) , then

① y-moment : $M_y = \sum m_i x_i$

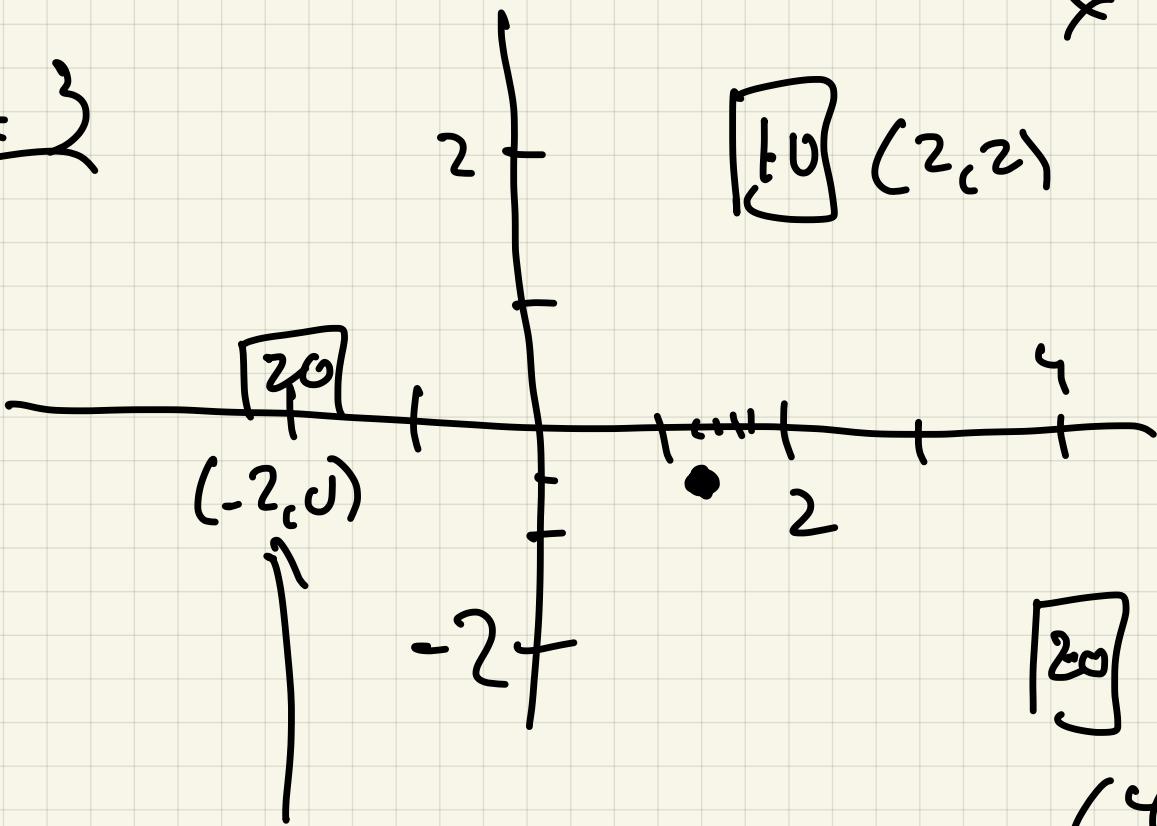
② x-moment $M_x = \sum m_i y_i$

③ Total mass $M = \sum m_i$

$$\text{Center of mass} = COM = \left(\frac{M_y}{M}, \frac{M_x}{M} \right)$$

if
 $\frac{1}{x} \quad \frac{1}{y}$

$\sum x$



$$M_y = -2(20) + 2(10) + 4(20)$$

$$= -40 + 20 + 80 = 60$$

$$M_x = 0(20) + 2(10) + -2(20)$$

$$= 20 - 40 = -20$$

$$M = 50$$

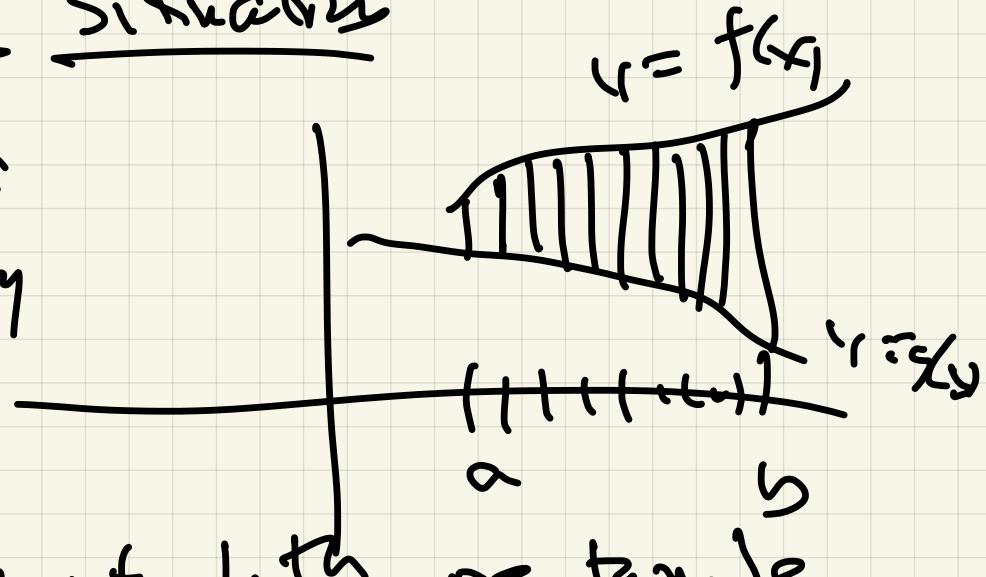
$$\bar{x} = \frac{60}{50} \quad \bar{y} = -\frac{20}{50}$$

$$= 1.2$$

$$-.4$$

Continuous Situations

f = constant density



m_K = mass of k^{th} rectangle

$$(1 \leq k \leq n) \quad ||$$

$$\sum_{k=1}^n \delta \underbrace{(f(\bar{x}_k) - g(\bar{x}_k))}_{\text{area}} \Delta x$$

Center of k^{th} rectangle is

$$(x_i, \frac{f(x_{ik}) + g(x_{ik})}{2})$$

so

$$\bar{y}_{ik}$$

$$M_y \approx \sum m_k y_k = \sum f(f(x_k) - g(x_k)) \bigcirc x_k \Delta x$$

$$M_x \approx \sum (m_k y_k) = \sum \frac{f(x_k) - g(x_k) \sqrt{f(x_k) + g(x_k)}}{2} \Delta x$$

$$= \sum \frac{\delta f(x_k)^2 - g(x_k)^2}{2} \Delta x$$

Take limit as $n \rightarrow \infty$

$$M = \int_a^b f(f(x) - g(x)) dx$$

$$M_y = \int_a^b f(f(x) - g(x)) \times dx$$

$$M_x = \int_a^b f \frac{f(x)^2 - g(x)^2}{2} dx$$