
PERTURBATIONS OF EQUIVARIANT DIRAC OPERATORS

IGOR PROKHORENKOV AND KEN RICHARDSON

Abstract. Let M be a compact Riemannian manifold with an action by isometries of a
compact Lie group G. Suppose that this action could be lifted to an action by isometries
on a Clifford bundle E over M. We use the method of the Witten deformation to compute
the virtual representation-valued index of a transversally elliptic Dirac operator on E. We
express the multiplicities of the associated representation in terms of the local action of G
near the singular set of the deformation. A complete answer is obtained when G = S1.

1. The Dirac Operator

Here we give an idea of what the standard Dirac operator is.
Recall that the Laplacian in R3 is the second order differential operator

∆ = − ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

.

This is an extremely useful operator in physics. Examples include the heat equation

∂u

∂t
+ ∆u = 0

and the wave equation
∂2u

∂t2
−∆u = 0.

Dirac wanted to find a square root for the Laplacian, for reasons of physics. Well, let’s
see. It should be a 1st order differential operator. Oh, let’s just try to guess what it should
be: call it D (for Dirac). Let’s try

D =
3∑
j=1

cj∂j = c1
∂

∂x1

+ c2
∂

∂x2

+ c3
∂

∂x3

with a, b, c constants – for starters. We compute:

D2 =

(
3∑
j=1

cj∂j

)2

= c2
1

∂2

∂x2
1

+ c2
2

∂2

∂x2
2

+ c2
3

∂2

∂x2
3

+ (c1c2 + c2c1)
∂2

∂x1∂x2

+ (c1c3 + c2c3)
∂2

∂x2∂x3

+ ...

= ∆???
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So, it looks like it is not likely to work. Hey, unless you use quaternions. Anyway, here is
the answer:

c1 =

(
0 −1
1 0

)
, c2 =

(
0 i
i 0

)
, c3 =

(
i 0
0 −i

)
.

These are called the Pauli spin matrices or Clifford matrices. The resulting algebra is called
the Clifford algebra. The resulting Dirac operator is

D =

(
0 −1
1 0

)
∂

∂x1

+

(
0 i
i 0

)
∂

∂x2

+

(
i 0
0 −i

)
∂

∂x3

Dirac operators are very nice. They are self-adjoint, elliptic operators, and they have
discrete spectrum on suitably chosen domains. What does elliptic mean? It means that the
principal symbol

σ (D) (y) =
3∑
j=1

cj (iyj)

= iy1

(
0 −1
1 0

)
+ iy2

(
0 i
i 0

)
+ iy3

(
i 0
0 −i

)
=

(
−y3 −iy1 − y2

iy1 − y2 y3

)
is invertible for every nonzero vector y. To see this, note that

det

(
−y3 −iy1 − y2

iy1 − y2 y3

)
= −y2

1 − y2
2 − y2

3.

In layman’s terms, elliptic operators are those operators that differentiate in all possible di-
rections. Elliptic operators are important for many reasons — they have finite-dimensional
kernels and eigenspaces, and those spaces consist of smooth sections (vector-valued func-
tions).

In general, the Dirac operator on a Hermitian vector bundle E over an n-dimensional
Riemannian manifold M is

D =
n∑
j=1

cj∇E
ej
,

where each cj = c (ej) is a section of End (E) (c : TM → End (E)), and {ej} is a local
orthonormal frame in TM . The cj satisfy the same relations; that is

c (v) c (w) + c (w) c (v) = −2 〈v, w〉 , also

∇E
w (c (V ) s) = c

(
∇M
w V
)
s+ c (V )∇E

ws

for any v, w ∈ TM, V ∈ Γ (TM), s ∈ Γ (E). In the case M = R3 or any quotient thereof,
we use the matrices above to define Clifford multiplication in general as

c (v) = c (v1, v2, v3) =

(
iv3 −v1 + iv2

v1 + iv2 −iv3

)
.
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Examples of a Dirac operator include D above on sections of C2 → T 3, or on C2 → S2:

DS2

= c

(
∂

∂φ

)
∂

∂φ
+

1

sinφ
c

(
1

sinφ

∂

∂θ

)
∂

∂θ

= c (vφ) vφ +
1

sin2 φ
c (vθ) vθ

=

(
−i sinφ −e−iθ cosφ
eiθ cosφ i sinφ

)
∂

∂φ
+

1

sinφ

(
0 ie−iθ

ieiθ 0

)
∂

∂θxy

Check: (
−i sinφ −e−iθ cosφ
eiθ cosφ i sinφ

)2

=

(
0 ie−iθ

ieiθ 0

)2

=

(
−1 0
0 −1

)
(

0 ie−iθ

ieiθ 0

)(
−i sinφ −e−iθ cosφ
eiθ cosφ i sinφ

)
=

(
i cosφ − (sinφ) e−iθ

(sinφ) eiθ −i cosφ

)
(
−i sinφ −e−iθ cosφ
eiθ cosφ i sinφ

)(
0 ie−iθ

ieiθ 0

)
=

(
−i cosφ (sinφ) e−iθ

− (sinφ) eiθ i cosφ

)
Also

∆S2

= − ∂2

∂φ2
− cotφ

∂

∂φ
− 1

sin2 φ

∂2

∂θ2
.

In a sense, the Dirac operators are the most fundamental among first-order elliptic opera-
tors. Given any first-order, elliptic differential operator on Rn, there is a Dirac operator that
is stably homotopic to it. The word “homotopic” refers to a homotopy (i.e. continuous fam-
ily) of elliptic differential operators, and the word “stably” refers to the bundle enlargement
process or its reverse: given an elliptic D on Cn-valued functions (i.e. - sections), the opera-

tor D⊗
(

0 1
1 0

)
on Cn ⊗C2 ∼= C2n is also elliptic. For this reason the Dirac operators are

important in index theory. The index of an elliptic operator L+ : Γ (M,E+) → Γ (M,E−)
on sections of a graded Hermitian vector bundle E = E+ ⊕ E− over a closed Riemannian
manifold M is defined to be

ind
(
L+
)

= ker
(
L+
)
− ker

(
L−
)
,

where L− is defined to be the L2 (M,E)-adjoint of L+. By the celebrated Atiyah-Singer
Index Theorem, this index can be expressed in terms of geometric and topological data; the
simplest example of this yields the Gauss-Bonnet Theorem of differential geometry:

ind
(
d+ δ|Ωeven(M)→Ωodd(M)

)
= χ (M) =

1

2π

∫
M

K,

where d+δ is the sum of the exterior derivative and its adjoint, χ (M) is the Euler character-
istic of the closed surface M , K is the Gauss curvature. The index of an elliptic operator is
invariant under stable homotopy, so we can always reduce such problems to Dirac operator
index problems (at least locally). There are other ways to see that the index of any elliptic
operator on any manifold can be reduced to a calculation of the index of a Dirac operator
(on a possibly different manifold).
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2. Examples of transversally elliptic operators

In this section we describe constructions of transversally elliptic differential operators.
The setting for a transversally elliptic operator is as follows. Suppose that the compact
Lie group G acts on the closed, Riemannian manifold M by isometries; suppose that in
addition we have a Hermitian vector bundle E over M on which G acts unitarily (in a
way compatible with the action on M). Such an action induces an action on Γ (M,E) by
(gs) (x) := g (s (g−1x)) . A differential operator D is called equivariant if it commutes with

the action of G; in particular such operators preserve the space Γ (M,E)G of G-invariant
sections. Let (TGM)x denote the subspace of the tangent space TxM that is the normal
space to the orbit Gx. Note that the dimension of this space can vary with x ∈M . We say
that an equivariant operator D is transversally elliptic if the symbol σ (D) is invertible on
all nonzero covectors in each ((TGM)x)

∗. In layman’s terms, we only require that D act like
an elliptic operator in directions orthogonal to the orbits.

A simple example of a transversally elliptic operator is as follows. Consider the torus T 3 =
Z3�R3, the unit cube with opposite faces identified. Next, let G = S1 act by θ (x1, x2, x3) =(
x1, x2, x3 + θ

2π

)
mod1. Then the orbits are the circles where x1 and x2 are fixed and x3

varies. Then the truncated Dirac operator

Dtr =

(
0 1
−1 0

)
∂

∂x1

+

(
0 i
i 0

)
∂

∂x2

is transversally elliptic. This “truncation” is actually a general procedure that works in
special cases of group actions, which we now describe.π

2.1. Foliation case. Suppose that the compact Lie group G acts on the closed, Riemannian
manifold M by isometries, such that the isotropy subgroups all have the same dimension.
Equivalently, the orbits have the same dimension. In this case, the orbits form a Riemann-
ian foliation F of M such that the metric is bundlelike, meaning that the leaves (orbits)
are locally equidistant. In such foliations, there is a natural construction of transversal
Dirac operators (see Bruning-Kamber-Richardson, Glazebrook-Kamber, Lazarov), described
as follows. Choose a local adapted frame field {e1, ..., en} for the tangent bundle of M , such
that {e1, ..., eq} is a local basis of the normal bundle NF for the foliation and such that
each ej is a basic vector field for 1 ≤ j ≤ q. The word basic means that the flows of those
vector fields map leaves to leaves, and such a basis can be chosen near every point if and
only if the foliation is Riemannian. Next, assume that we have a complex Hermitian vector
bundle E →M that is a bundle of Cl (NF) modules that is equivariant with respect to the
G action, and let ∇ be the corresponding equivariant, metric, Clifford connection. We define
the transversal Dirac operator Dtr by

Dtr :=

q∑
j=1

c (ej)∇ej .

This definition is independent of the choices made; in fact it is the composition of the maps

Γ (E)
∇→ Γ (T ∗M ⊗ E)

πF→ Γ (N∗F ⊗ E)
∼=→ Γ (NF ⊗ E)

c→ Γ (E) ,

where πF is the map induced by the projection T ∗M → N∗F , and where c denotes Clifford
multiplication. This operator is transversally elliptic and maps the space of invariant sections



PERTURBATIONS OF EQUIVARIANT DIRAC OPERATORS 5

to itself. However, it is generally not self adjoint on the space of invariant sections. The
simple modification

D̃ = Dtr − 1

2
c (H)

is a self-adjoint operator, where H is the mean curvature vector field of the orbits.

2.2. General case - Lifted Transversal Dirac Operator. Suppose that the compact Lie
group G acts on the closed, connected Riemannian manifold M in a more general way, where
the dimensions of the orbits are not all the same. We assume that G acts by isometries.

Given a G-manifold, we first may the group action to an action on the bundle OM
p→ M

of orthonormal frames over M . The induced action of g ∈ G on TM is the differential of
the diffeomorphism, and this action induces an action on OM . Observe that the action of G
on OM is regular, meaning that the isotropy subgroups corresponding to any two points of
M are conjugate. This can be seen as follows. Let H be the isotropy subgroup of a frame
f ∈ OM . Then H also fixes p (f) ∈ M , and since H fixes the frame, its differentials fix the
entire tangent space at p (f). Since it fixes the tangent space, every element of H also fixes
every frame in p−1 (p (f)); thus every frame in a given fiber must have the same isotropy
subgroup. Since the elements of H map geodesics to geodesics and preserve distance, a
neighborhood of p (f) is fixed by H. Thus, H is a subgroup of the isotropy subgroup at
each point of that neighborhood. Conversely, if an element of G fixes a neighborhood of a
point x in M , then it fixes all frames in p−1 (x), and thus all frames in the fibers above that
neighborhood. Since M is connected, we may conclude that every point of OM has the same
isotropy subgroup H, and H is the subgroup of G that fixes every point of M . Since this
subgroup is normal, we often reduce the group G to the group G/H so that our action is
effective, in which case the isotropy subgroups on OM are all trivial.

In any case, the G orbits on OM are diffeomorphic and form a Riemannian fiber bundle,
in the natural metric on OM defined as follows. We require that fibers are orthogonal to the
horizontal subspaces coming from the Levi-Civita connection, the metric on the fibers comes
from the normalized, biinvariant metric on O (n), and the horizontal metric is the pullback
of the metric on M . The Riemannian submersion from the frame bundle OM to the orbit
space W = OM�G induces a natural metric on W .

We will use the structure described above to define natural transversal Dirac operators on
the general G-manifold M . Suppose that we have a Hermitian vector bundle E → OM that
is equivariant with respect to both the G action and the O (n) action; since both groups
are subgroups of the isometry group of OM , there are many geometrically and topologically
defined bundles with this property. Let NG denote the normal bundle to the foliation of G-
orbits on OM , and suppose that in addition E is a bundle of Cl (NG) modules. We construct
the transversal Dirac operator Dtr as in the last section. Let E denote the vector bundle
over M defined as follows. Given x ∈M , define

Ex := Γ
(
E|p−1(x)

)O(n)

,

the space of O (n)-invariant sections of E restricted to the fiber above x. This forms a finite
dimensional vector space whose dimension is less than or equal to the rank of E. We denote
by E the vector bundle over M whose fibers are Ex; a maximal linearly independent set of
O (n)-invariant sections of E defined near p−1 (x) give the local trivializations of Ex. There is

a natural invertible map Φ : Γ (E) → Γ (E)O(n) defined by Φ (s) (w) = s (p (w))|w. Observe
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that Φ is an L2 isometry, and thus its adjoint is its inverse. Next, we define the operator
D : Γ (E)→ Γ (E) by the formula

D = Φ−1 ◦Dtr ◦ Φ.

Note that this operator is well defined, since Dtr maps Γ (E)O(n) to itself. This operator is
transversally elliptic.

2.3. General Case - Reduced Dirac Operator. Another naturally defined transversal
Dirac operator is defined as follows. Again, suppose that the compact Lie group G acts on
the closed, connected Riemannian manifold M , where the dimensions of the orbits are not
all the same. We assume that G acts by isometries. Let {V1, ..., Vk} be a set of vector fields
on M induced from an orthonormal basis of g. Let E be a graded, self-adjoint Cl (TM)
module over M , and let c : TM →Hom(E,E) denote the Clifford multiplication. Let
D : Γ (M,E)→ Γ (M,E) be ordinary Dirac operator associated to this data. We define the

reduced Dirac operator D̂ by

D̂ := D −
k∑
j=1

c (Vj)∇Vj .

It is clear that this definition is independent of the choice of orthonormal basis of g. Also,
it is clear that this operator is transversally elliptic, but it fails to be elliptic in general.

2.4. Locally Transverse Dirac operators. We again assume that the compact Lie group
G acts on the closed, connected Riemannian manifold M , where the dimensions of the orbits
are not all the same, and we assume that G acts by isometries. We assume G is endowed with
the normalized, biinvariant metric. Suppose that L : Γ (M,E) → Γ (M,E) is a differential
operator on sections of a G-equivariant vector bundle E over M . We say that L is a locally
transverse Dirac operator if near any point p ∈ M , it has the following form. Suppose that
the orbit pG of p has codimension q in M . Let H denote the isotropy subgroup of p, and
let H⊥ denote the subspace of g consisting of vectors orthogonal to the submanifold H ⊂ G
at the identity. Then the subgroup exp

(
H⊥
)

of G acts on M , and its orbits near p form a
Riemannian foliation of codimension q, and the connected component of pG coincides with
p exp

(
H⊥
)
. Then we require that the action of L on invariant sections of E coincide with a

locally defined transversal Dirac operator corresponding to the Riemannian foliation defined
near p. That is, given a local adapted orthonormal basis {e1, ..., eq} for the normal bundle
to the orbits of exp

(
H⊥
)

near p that is locally invariant, then

Lu =

(
q∑
j=1

c (ej)∇ej

)
u,

for any section u of E defined near p such that LXu = 0 for every X ∈ H⊥. Here, LX
denotes the Lie derivative with respect to X.

3. Examples

Example 3.1. Let S1 act on S2 by rotations. Let E be the standard spinc bundle over
S2 = CP 1.

First we will construct a lifted transversal Dirac operator on sections of E. Let p : OS2 →
S2 be the oriented orthonormal frame bundle. Observe that OS2 is isometric to SO (3), which
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is isometric to RP 3 in appropriate invariant metrics (see [14]). In particular, the metric at
any point of SO (3) ⊂M3 (R) is

〈A,B〉 = tr
(
AtB

)
.

To see this isometry, observe that a point of OS2 is a unit vector in R3 and a unit vector
orthogonal to it; a third vector may be added canonically to produce an oriented orthonormal
frame in R3. We will consider matrices of SO (3) to be elements of OS2 by using the first row
as the position vector and the following rows as the framing of the tangent space. Observe
that the lifted action corresponds to the action on SO (3) given by multiplication on the right
by  cos t − sin t 0

sin t cos t 0
0 0 1

 .

Vectors on SO (3) may be expressed as elements of the Lie algebra

o (3) =


 0 a b
−a 0 c
−b −c 0

∣∣∣∣∣∣ a, b, c ∈ R
 ,

and the tangent space to the S1 action is the span of the left-invariant vector field induced

by

 0 1 0
−1 0 0
0 0 0

 at the identity. Thus, the normal bundle of the corresponding foliation on

SO (3) is trivial and is the subbundle NS1of T (SO (3)) that is given by the subspace NS1|A
of M3 (R) at the matrix A ∈ SO (3), where

NS1|A =

A
 0 0 b

0 0 c
−b −c 0

∣∣∣∣∣∣ b, c ∈ R
 ⊂M3 (R) .

Note that the vectors V1 = A

 0 0 1
0 0 0
−1 0 0

 and V2 = A

 0 0 0
0 0 1
0 −1 0

 are orthogonal to

the orbit direction T = A

 0 1 0
−1 0 0
0 0 0

 in the SO (3) metric:

〈V1, T 〉 = tr

A
 0 0 1

0 0 0
−1 0 0

T

A

 0 1 0
−1 0 0
0 0 0


= tr

 0 0 1
0 0 0
−1 0 0

T

ATA

 0 1 0
−1 0 0
0 0 0


= tr

 0 0 −1
0 0 0
1 0 0

 0 1 0
−1 0 0
0 0 0

 = 0.
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Similarly,

〈V2, T 〉 = 〈V1, V2〉 = 0.

Next, we consider the trivial bundle C2 → SO (3) and the action of Cl (R2) ∼= Cl (NS1) on C2

with c (V1) =

(
0 −1
1 0

)
, c (V2) =

(
0 i
i 0

)
. Using this data and the directional derivatives

, we produce the transversal Dirac operator

Dtr :=
2∑
j=1

c (Vj) ∂Vj ,

where ∂Vj denotes the directional derivative in direction Vj. Now, as in Section 2.2, we
consider for x ∈ S2 the set

Ex = Γ
(
SO (3) ,C2

)SO(2)
∣∣∣
p−1(x)

= Γ
(
p−1 (x) ,C2

)SO(2)

∼= C2

Thus, E is the trivial bundle C2 → S2. Letting A = (Aij) ∈ SO (3), note that p∗ (V1)A is the
vector on tangent space to the sphere at p (A) = (A11, A12, A13) that satisfies

p∗ (V1)A = p∗

A
 0 0 1

0 0 0
−1 0 0


= p∗

 −A13 0 A11

−A23 0 A21

−A33 0 A31


= (−A13, 0, A11)

=

(
−z ∂

∂x
+ x

∂

∂z

)∣∣∣∣
(A11,A12,A13)

Similarly,

p∗ (V2)A =

(
−z ∂

∂y
+ y

∂

∂z

)∣∣∣∣
(A11,A12,A13)
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Thus, the lifted transversal Dirac operator on sections of C2 → S2 is

D = Φ−1 ◦Dtr ◦ Φ =
2∑
j=1

c (Vj) ∂p∗Vj

=

(
0 −1
1 0

)(
−z ∂

∂x
+ x

∂

∂z

)
+

(
0 i
i 0

)(
−z ∂

∂y
+ y

∂

∂z

)
=

(
0 −1
1 0

)
∂

∂θxz
+

(
0 i
i 0

)
∂

∂θyz

=

(
0 e−iθxy ∂

∂φ
+ ieiθxy cotφ ∂

∂θxy

−eiθxy ∂
∂φ

+ ie−iθxy cotφ ∂
∂θxy

0

)

=

(
0 e−iθxy

−eiθxy 0

)
∂

∂φ
+ cotφ

(
0 −ie−iθxy
−ieiθxy 0

)
∂

∂θxy
,

where is the θxz is the polar angular coordinate in the xz-plane, θyz is the polar angular
coordinate in the yz-plane, and φ is the distance from the north pole. Note that this operator
fails to be elliptic precisely at the equator z = 0, because the vector fields

(
−z ∂

∂x
+ x ∂

∂z

)
and(

−z ∂
∂y

+ y ∂
∂z

)
are collinear exactly at points where z = 0.

Observe that this operator is not self-adjoint, although its principal symbol is (because each
∂
∂θ·

is skew-adjoint and each matrix is skew adjoint).

Note that the kernel of this operator restricted to the space of smooth sections of C2 is
infinite dimensional. Suppose we try to solve the equation

Du = 0.

Suppose u =

(
u1 (x, y, z)
u2 (x, y, z)

)
∈ kerD, then observe that

D

(
u1 (x, y, z)

0

)
=

(
0(

−z ∂u1

∂x
+ x∂u1

∂z

)
+ i
(
−z ∂u1

∂y
+ y ∂u1

∂z

) )

=

(
0(

−z
(
∂
∂x

+ i ∂
∂y

))
u1

(
x, y,

√
1− x2 − y2

) )
,

in the upper hemisphere. Thus, in the upper hemisphere, u1 is holomorphic as a function
of the coordinates (x, y). Similarly, u2 is antiholomorphic with respect to the holomorphic
coordinates z = x+ iy in the upper hemisphere. The same facts are true for the restriction of
u to the lower hemisphere. Note that any such function that is defined on the unit disk and
continuous on the closure is determined by its values on the boundary. Thus, the function u1

and u2 are symmetric with respect to the map z → −z. We conclude that the smooth sections

u =

(
u1

u2

)
in kerD are exactly functions of x and y alone such that u1 is holomorphic and

u2 is antiholomorphic.

Example 3.2. Let S1 act on S2 by rotations, as above. We will now examine the reduced

Dirac operator D̂ on S2 with the given S1 action, as in Section 2.3. First, observe that
the standard spinc bundle over S2 is just the trivial bundle C2 → S2, where the action of
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Cl (TS2) on C2 is given by the restriction of the action of Cl (R3) on C2. That is, the action
of the vector v = (v1, v2, v3) ∈ TxS2 ⊂ R3 is given by multiplication by the matrix

C (v) = v1

(
0 −1
1 0

)
+ v2

(
0 i
i 0

)
+ v3

(
i 0
0 −i

)
.

Thus, the full Dirac operator on S2 is

D = C (e1) ∂e1 + C (e2) ∂e2 ,

where {e1, e2} is a local orthonormal basis for the tangent space and ∂ei denotes the directional
derivative in direction ei. Next, let ∂

∂θxy
denote the induced fundamental vector field on S2

that comes from the S1 action, so that

∂

∂θxy
= −y ∂

∂x
+ x

∂

∂y
.

By the definition in Section 2.3, the reduced Dirac operator is

D̂ = D − c
(

∂

∂θxy

)
∇ ∂

∂θxy

= D − c
(

∂

∂θxy

)
∂

∂θxy
.

Locally, at any point (x, y, z) ∈ S2� {z = ±1}, for convenience we consider the orthonormal

frame
{

∂
∂φ
, 1

sinφ
∂

∂θxy

}
, where φ is the angular coordinate (measured from the z-axis). In this

basis,

D = C

(
∂

∂φ

)
∂

∂φ
+ C

(
1

sinφ

∂

∂θxy

)
1

sinφ

∂

∂θxy
,

so

D̂ = C

(
∂

∂φ

)
∂

∂φ
+ C

(
1

sinφ

∂

∂θxy

)
1

sinφ

∂

∂θxy
− C

(
∂

∂θxy

)
∂

∂θxy

= C

(
∂

∂φ

)
∂

∂φ
+
(
cot2 φ

)
C

(
∂

∂θxy

)
∂

∂θxy

=

[
cos θxy cosφ

(
0 −1
1 0

)
+ sin θxy cosφ

(
0 i
i 0

)
− sinφ

(
i 0
0 −i

)]
∂

∂φ

+
(
cot2 φ

) [
− sin θxy sinφ

(
0 −1
1 0

)
+ cos θxy sinφ

(
0 i
i 0

)]
∂

∂θxy

=

(
−i sinφ −e−iθxy cosφ
eiθxy cosφ i sinφ

)
∂

∂φ
+ cosφ cotφ

(
0 ie−iθxy

ieiθxy 0

)
∂

∂θxy

This operator fails to be elliptic exactly at the points where φ = π
2
, at the equator. Note

that the equation((
−i sinφ −e−iθ cosφ
eiθ cosφ i sinφ

)
∂

∂φ
+ cosφ cotφ

(
0 ie−iθ

ieiθ 0

)
∂

∂θ

)(
f (φ)
g (φ)

)
= 0

implies(
f (φ)
g (φ)

)
is a constant vector. Also,
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((
−i sinφ −e−iθ cosφ
eiθ cosφ i sinφ

)
∂

∂φ
+ cosφ cotφ

(
0 ie−iθ

ieiθ 0

)
∂

∂θ

)(
einθf (φ)
einθg (φ)

)
= 0

implies((
−i sinφ −e−iθ cosφ
eiθ cosφ i sinφ

)
∂

∂φ
− n cosφ cotφ

(
0 e−iθ

eiθ 0

))(
f (φ)
g (φ)

)
= 0,

which implies(
∂

∂φ
− n cosφ cotφ

(
−i sinφ −e−iθ cosφ
eiθ cosφ i sinφ

)−1(
0 e−iθ

eiθ 0

))(
f (φ)
g (φ)

)
= 0, or(

∂

∂φ
− n cosφ cotφ

(
cosφ i (sinφ) e−iθ

−i (sinφ) eiθ − cosφ

))(
f (φ)
g (φ)

)
= 0

for all values of θ, so in particular if we differentiate the equation with respect to θ at
θ = 0, we get

−n cosφ cotφ

(
0 sinφ

sinφ 0

)(
f (φ)
g (φ)

)
= 0, so(

f (φ)
g (φ)

)
=

(
0
0

)
. Thus, there are no solutions of the form

(
einθf (φ)
einθg (φ)

)
for n 6= 0.

Note that ∂
∂θ

commutes with D̂, so we would expect that the kernel of D̂ would decompose into

eigenspaces of ∂
∂θ

. These calculations have shown that the only sections u that are solutions
to the equation

D̂u = 0

are the constant sections of C2 → S2. Note the contrast with the previous example of the
lifted transversal Dirac operator above, which has an infinite-dimensional kernel.

Example 3.3. Let S1 act on S2 by rotations, as above. We now construct examples of
locally transverse Dirac operators as in Section 2.4. One such example is the reduced Dirac

operator D̂ = D − c
(

∂
∂θxy

)
∇ ∂

∂θxy
above. Another similarly constructed example would be

L = D −M (θxy, φ)∇ ∂
∂θxy

,

where M (θxy, φ) is any smooth section of M2 (C)→ S2 that maps S± to S∓, where S± are the
subbundles of C2 corresponding to the graded spinor bundle. Since M (θxy, φ)∇ ∂

∂θxy
is zero

on sections invariant by the group action, that term is irrelevant to the “locally transverse”
condition.

4. Transversally elliptic operators and their index

Let us now discuss the general problem of localizing a multiplicity of the index of a
transversally elliptic operator. First of all, let’s set the stage: D± : Γ (M,E±)→ Γ (M,E∓)
is a first order differential operator with D− = (D+)

∗
that is equivariant and transversally

elliptic with respect to the action of a connected, compact group G of isometries of (M,E±).
The group G acts on Γ (M,E±) by (sg) (x) = s (xg−1) g. Let ρ : G → End (Vρ) be an irre-
ducible unitary representation of G, and let χρ : G→ C be its character, χρ (g) = tr (ρ (g)).
By the Peter-Weyl Theorem, the functions {χρ}ρ are eigenfunctions of the Laplacian on G
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and form an orthonormal set in L2 (G) with the normalized, biinvariant metric. The multi-
plicity indρ (D+) ∈ Z is defined to be the multiplicity of the representation ρ in the (infinite
dimensional) representation of G on kerD+ minus the multiplicity of ρ in the representation
of G on kerD−. If ρ0 is the trivial representation of G, then we have

indρ0
(
D+
)

: = dim
((

kerD+
)G )− dim

((
kerD−

)G )
= indG

(
D+
)

:= index
(
D+
∣∣
Γ(M,E+)G→Γ(M,E−)G

)
.

Similarly,

indρ
(
D+
)

: = multiplicity of ρ in kerD+ −multiplicity of ρ in kerD−

=
1

dimVρ
index

(
D+
∣∣
Γ(M,E+)ρ→Γ(M,E−)ρ

)
,

where Γ (M,E±)
ρ

is the space of sections that is the direct sum of the irreducible G-
representation subspaces of Γ (M,E±) that are unitarily equivalent to the ρ representation.
The above equalities are valid because the action of G on Γ (M,E±) commutes with D±.
We note that these multiplicities are finite for the reasons given in the next paragraph. This
fact is well-known and was first shown by Atiyah in [1].

Let {X1, ..., Xr} be an orthonormal basis of the Lie algebra of G. Let LXj denote the
induced Lie derivative with respect to Xj on sections of E, and let C =

∑
j L∗XjLXj be the

Casimir operator on sections of E. Letting exp denote the exponential map on G, (·, ·) be
the pointwise Hermitian inner product on E, and letting s, s′ ∈ Γ (M,E±), observe that〈

LXjs, s′
〉

=
∂

∂t

∣∣∣∣
t=0

∫
M

(s (y exp (−tXj)) exp (tXj) , s
′ (y)) dvol (y)

=
∂

∂t

∣∣∣∣
t=0

∫
M

(s (y exp (−tXj)) , s
′ (y) exp (−tXj)) dvol (y)

(with u = y exp (−tXj)) =
∂

∂t

∣∣∣∣
t=0

∫
M

(s (u) , s′ (u exp (tXj)) exp (−tXj)) dvol (u)

=
〈
s,L−Xjs′

〉
=
〈
s,−LXjs′

〉
,

so that C = −
∑

j

(
LXj

)2
. Furthermore, since the Laplacian on C∞ (G) is given by ∆ =

−
∑

j X
2
j , we have the following formulas relating C and ∆. Given two sections s, s′ ∈

Γ (M,E±), let f : G→ C be the function defined by f (g) = 〈sg, s′〉. Then

〈Cs, s′〉 = ∆f (1) ;

∆f (g) = 〈C (sg) , s′〉 .

Since C is induced from the action of G, C commutes with D± and thus acts on the
eigenspaces of D±. Likewise, G acts on the eigenspaces of C. Note that Cs = 0 if and
only if s ∈ Γ (M,E)G, so that(

kerD±
)G

=
(
ker
(
D∓D±

))G
=

(
ker
(
D∓D± + tC

))G
,
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which is finite dimensional, because D∓D± + tC is elliptic for sufficiently large t. Thus,
indρ0 (D+) is a well-defined integer. More generally, suppose that Vρ is an irreducible com-
ponent of Γ (M,E±)

ρ
and that the set of sections {sk} is an orthonormal basis of Vρ. Since

G acts on the eigenspaces of C, we may assume that Vρ is a subspace of the eigenspace of C
corresponding to an eigenvalue µ of the Casimir operator C. For every g ∈ G, the character
satisfies χρ (g) =

∑
k 〈skg, sk〉 and ∆χρ = λρχρ, so that

λρχρ (1) = λρ
∑
k

〈sk, sk〉

=
∑
k

〈C (sk) , sk〉 = µ
∑
k

〈sk, sk〉 .

Therefore, µ = λρ, and C acts on Γ (M,E±)
ρ

by multiplication by λρ. The argument also
shows that every eigenspace of C corresponding to eigenvalue µ is a direct sum of copies of
the representation ρ, where λρ = µ. In other words, Γ (M,E±)

ρ
is precisely the λρ-eigenspace

of C. Thus,

ker
(
D±
∣∣
Γ(M,E±)ρ

)
= ker

(
D∓D±

∣∣
Γ(M,E±)ρ

)
= ker

(
D∓D± + t (C − λρ1)

∣∣
Γ(M,E±)ρ

)
,

which is finite dimensional, because D∓D± + t (C − λρ1) is elliptic on Γ (M,E±) for suf-
ficiently large t. This argument shows that the multiplicities indρ (D+) are well-defined
integers. Also, by standard asymptotic arguments, the multiplicities cannot grow faster
than polynomially as a function of the eigenvalue λρ.

The relationship between the index multiplicities and Atiyah’s equivariant distribution-
valued index indg (D+) is as follows. The virtual character indg (D+) is given by (see [1])

indg
(
D+
)

: = “tr (g|kerD+)− tr (g|kerD−) ”

=
∑
ρ

indρ
(
D+
)
χρ (g) ∈ D (G) ,

where D (G) is the set of distributions on G. Note that the trace above does not make sense
as a function, since kerD± is in general infinite-dimensional, but it does make sense as a
distribution on G . Similarly, the sum above does not in general converge, but it makes sense
as a distribution on G. That is, if dg is the normalized, biinvariant volume form on G, and
if φ =

∑
cρχρ ∈ C∞ (G), then

ind∗
(
D+
)

(φ) = “

∫
G

indg
(
D+
)
φ (g) dg”

=
∑
ρ

indρ
(
D+
) ∫

χρ (g)φ (g) dg

=
∑
ρ

indρ
(
D+
)
cρ,

an expression which converges because cρ is rapidly decreasing and indρ (D+) is grows at most
polynomially as ρ varies over the irreducible representations of G. From this calculation, we
see that the multiplicities determine Atiyah’s distributional index. Conversely, let α : G →
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End (Vα) be an irreducible unitary representation. Then

ind∗
(
D+
)

(χα) =
∑
ρ

indρ
(
D+
) ∫

χρ (g)χα (g) dg

= indαD+,

so that complete knowledge of the equivariant distributional index is equivalent to know-
ing all of the multiplicities indρ (D+). Note that Atiyah showed in [1] that the operator
D+|Γ(M,E+)ρ→Γ(M,E−)ρ is Fredholm, and thus its index indρ (D+) depends only on the homo-

topy class of the principal transverse symbol of D+.
Let us now consider the heat kernel expression for the index multiplicities. Given a

representation ρ : G→ Vρ, we wish to compute

indρ
(
D+
)

=
1

dimVρ
index

(
D+
∣∣
Γ(M,E+)ρ→Γ(M,E−)ρ

)
=

1

dimVρ

(
ker
(
D−D+

∣∣
Γ(M,E+)ρ

)
− ker

(
D+D−

∣∣
Γ(M,E−)ρ

))
=

1

dimVρ

(
dim (ker (D−D+ + u (C − λρ1)) ∩ Γ (M,E+)

ρ
)

− dim (ker (D+D− + u (C − λρ1)) ∩ Γ (M,E−)
ρ
)

)
.

Note that if Eµ denotes the eigenspace corresponding to eigenvalue µ, the map

D+ : Eµ
(
D−D+ + u (C − λρ1)

)
∩ Γ

(
M,E+

)ρ → Eµ
(
D+D− + u (C − λρ1)

)
∩ Γ

(
M,E+

)ρ
is an isomorphism as long as µ 6= 0. Thus, the usual McKean-Singer argument shows that
for every t > 0 and sufficiently large u > 0,

(dimVρ) indρ
(
D+
)

= tr

(
e−t(D

−D++u(C−λρ1))
∣∣∣
Γ(M,E+)ρ

)
− tr

(
e−t(D

+D−+u(C−λρ1))
∣∣∣
Γ(M,E−)ρ

)
= euλρt

(
tr

(
e−t(D

−D++uC)
∣∣∣
Γ(M,E+)ρ

)
− tr

(
e−t(D

+D−+uC)
∣∣∣
Γ(M,E−)ρ

))
.

More generally, if ψ : R≥0→ R>0 is a smooth, rapidly decreasing function such that ψ (0) = 1,
then

(dimVρ) indρ
(
D+
)

= tr
(
ψ
(
D−D+ + u (C − λρ1)

)∣∣
Γ(M,E+)ρ

)
−

tr
(
ψ
(
D+D− + u (C − λρ1)

)∣∣
Γ(M,E−)ρ

)
.

Now, observe the general fact about operators A that commute with a G action. If K (x, y)
is the kernel of the operator A, then

(Af) (x) =

∫
M

K (x, y) f (y) dvol (y) .

Next, observe that the operation f (x) 7−→ (Pf) (x) :=
∫
G
f (xg) dg commutes with A , so

that ∫
M

K (x, y) (Pf) (y) dvol (y) =

∫
M

PxK (x, y) f (y) dvol (y)

=

∫
M

(∫
G

K (xg, y) dg

)
f (y) dvol (y) .
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If f is an invariant section, then Pf = f, so that

(Af) (x) =

∫
M

(∫
G

K (xg, y) dg

)
f (y) dvol (y) .

Hence,
(∫

G
K (xg, y) dg

)
is a kernel for AG, the operator A restricted to invariant sections.

Thus,

tr
(
AG
)

=

∫
M×G

K (xg, x) dg dvol (x) .

Similarly, if α is an irreducible representation of G with character χα, the operation f (x) 7−→
(Pαf) (x) :=

∫
G
f (xg) χα (g) dg commutes with A, so that∫

M

K (x, y) (Pαf) (y) dvol (y) =

∫
M

Pα
xK (x, y) f (y) dvol (y)

=

∫
M

(∫
G

K (xg, y) χα (g) dg

)
f (y) dvol (y) .

If f is a section in Γ (M,E)α, then Pαf = f, so that

(Af) (x) =

∫
M

(∫
G

K (xg, y) χα (g) dg

)
f (y) dvol (y) .

Hence,
(∫

G
K (xg, y) χα (g) dg

)
is a kernel for Aα, the operator A restricted to Γ (M,E)α.

Thus,

tr (Aα) =

∫
M×G

K (xg, x) χα (g) dg dvol (x) .

By applying this formula to the traces above, we have

(dimVρ) indρ
(
D+
)

=

∫
M×G

euλρt
(
K+ (t, xg, x)−K− (t, xg, x)

)
χα (g) dg dvol (x)

=

∫
M×G

(
Kψ,+
ρ (xg, x)−Kψ,−

ρ (xg, x)
)
χα (g) dg dvol (x)

tr
(
ψ
(
D−D+ + u (C − λρ1)

)∣∣
Γ(M,E+)ρ

)
−

tr
(
ψ
(
D+D− + u (C − λρ1)

)∣∣
Γ(M,E−)ρ

)
where K± (t, x, y) is the kernel for e−t(D

∓D±+uC) on Γ (M,E±), and Kψ,±
ρ (x, y) is the kernel

for ψ (D−D+ + u (C − λρ1)) on Γ (M,E±).

5. Localization Theorem

Now we consider a more general situation, when (Ds)
2 − D2 = (D + sZ)2 − D2 =

s (ZD +DZ) + s2Z2 is a first order operator. In general, the kernel of Ds does not nec-
essarily localize at the critical points of the zeroth order operator Z (the points where the
rank of Z drops) as s → ∞. For example, let V be an equivariant vector field, and let
Ds = D + sic (V ); note that Z = ic (V ) is a self-adjoint zeroth order operator. If V has
isolated, nondegenerate zeros, then ic (V ) has isolated critical points. Note that Z2 = |V |2.
In this Section we prove the localization theorem for Ds.

In the following, let ‖ · ‖k,2 denote the Sobolev (k, 2) norm.
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Lemma 5.1. (Transversally Elliptic Estimates) Let D be a first order, strongly transversally
elliptic operator that maps the space Γ (M,E)ρ to itself, and suppose that the restriction of
D to Γ (M,E)ρ is formally self-adjoint. Then there exist positive constants cρ1, c

ρ
2 such that

for every ω ∈ Γ (M,E)ρ,

(1) ‖(D2 + 1)ω‖k,2 ≥ cρ2 ‖ω‖k+2,2 ≥ cρ1 ‖ω‖k+1,2

(2) If the coefficients of the operator D depend on a real parameter s and are bounded by
a polynomial in s as s→∞, then the corresponding constants cρ1 and cρ2 are bounded
by a polynomial in s as s→∞.

Proof. Since the restriction of D to Γ (M,E)ρ is formally self-adjoint, ‖(D2 + 1)ω‖2
0,2 =

〈D2ω,D2ω〉+ 2 〈Dω,Dω〉+ 〈ω, ω〉, and thus we have∥∥(D2 + 1
)
ω
∥∥

0,2
≥ ‖ω‖0,2 . (5.1)

Let {X1, ..., Xr} be an orthonormal basis of the Lie algebra of G. Let LXj denote the
induced Lie derivative with respect to Xj on sections of E, and let C =

∑
j L∗XjLXj be

the Casimir operator on sections of E. Let λρ be the eigenvalue of C corresponding to the
eigenspace Γ (M,E)ρ. For any ω ∈ Γ (M,E)ρ, (D2 + 1)ω = (D2 + u (C − λρ1) + 1)ω for
any u > 0, and for sufficiently large u > 0, (D2 + u (C − λρ1) + 1) is elliptic on Γ (M,E).
Thus, the ordinary elliptic estimates imply that∥∥(D2 + 1

)
ω
∥∥
k,2
≥ mk

2 ‖ω‖k+2,2 −m
k
0 ‖ω‖k,2 . (5.2)

for some constants mk
2 > 0 and mk

0 ≥ 0 for each k ≥ 0, independent of ω. Using (5.1) and
(5.2) with k = 0, the proposed inequality holds for k = 0. If the coefficients of the operator
D depend on a real parameter s and are bounded by a polynomial in s, then it is clear from
the construction that the constants in the inequalities above are bounded by polynomials in
s. Thus, the conclusion of the lemma is true for k = 0.

Assume the conclusion is true for 0 ≤ k ≤ r. Then∥∥(D2 + 1
)
ω
∥∥
r+1,2

≥ a1

∥∥∥(D2 + 1
)2
ω
∥∥∥
r−1,2

by the definition of Sobolev norm

≥ a2

∥∥(D2 + 1
)
ω
∥∥
r,2

by the induction hypothesis

≥ a3 ‖ω‖r+2,2 by the induction hypothesis, (5.3)

for positive constants a1, a2, and a3. The ordinary elliptic estimates for (D2 + u (C − λρ1) + 1)
imply that ∥∥(D2 + 1

)
ω
∥∥
r+1,2

≥ c3 ‖ω‖r+3,2 − c2 ‖ω‖r+2,2

for constants c3 > 0 and c2 ≥ 0. By (5.3),∥∥(D2 + 1
)
ω
∥∥
r+1,2

≥

(
c3

1 + c2
a3

)
‖ω‖r+3,2 .

The conclusion concerning the dependence on s is again clear. The result follows by induction
on k. �

With the notation as above, let ks (x, y) denote the kernel of the operator φ (Ds) on
Γ (M,E)ρ, where φ is a positive, even Schwartz function such that φ (0) = 1 and the Fourier
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transform φ̂ (ξ) is supported in the interval [−ε, ε]. Let Crit (V ) = {x ∈M |V (x) = 0}denote
the set of zeros of V .

Proposition 5.2. On the complement of a 2ε-neighborhood of Crit(V ), the kernel ks (x, y)
of φ (Ds) restricted to Γ (M,E)ρ satisfies ks (x, y) → 0 uniformly as s → ∞. That is,
ks (x, y)→ 0 uniformly for y in the complement of a 2ε-neighborhood of Crit(V ) and x ∈M .

Proof. This proof is the same as [42] with some modifications. Choose a constant C so that
‖V (x)‖ ≥ C > 0 for all x in the complement of a ε-neighborhood of Crit(V ). Then for every
section β ∈ Γ (M,E)ρ that is supported on such a neighborhood and for sufficiently large s,

〈
D2
sβ, β

〉
≥ C2s2

2
〈β, β〉 , D (5.4)

by formula (??). Let H denote the L2 closure of the set of sections in Γ (M,E)ρ supported on
a ε-neighborhood of Crit(V ). Then D2

s is a positive, symmetric operator on a dense subset
of H, so it extends to a self-adjoint operator A on H satisfying the same inequality above.

Let ω ∈ Γ (M,E)ρ be supported on the complement of a 2ε -neighborhood of Crit (V ),
and let

ωt = cos (tDs)ω =
1

2

(
eitDs + e−itDs

)
ω,

which is a solution to the generalized wave equation
(
∂2

∂t2
+D2

s

)
ωt = 0 corresponding to the

operator D2
s with initial conditions ω0 = ω, ∂

∂t
ω0 = 0. The family of sections ωt is the unique

solution to this generalized wave equation (see [26], [36], and [46]). Note that the formula
above implies that ωt is an element of Γ (M,E)ρ.

By the finite propagation speed property of symmetric hyperbolic systems (see [23]), the
propagation speed of solutions to this equation is bounded from above by the supremum of
the operator norms of the principal symbol of Ds, which is 1. Therefore, ωt is identically
zero on the ε-neighborhood of Crit (V ) if |t| < ε. This implies that D2

sωt = Aωt for |t| < ε,
so that ωt is the unique solution to the system

∂2

∂t2
ωt + Aωt = 0; ω0 = ω,

∂

∂t
ω0 = 0.

Since A is self-adjoint, we may use the functional calculus to write ωt = cos
(
t
√
A
)
ω.

For each nonnegative integer m, define φm by the formula

φm(λ) = (1 + λ2)2mφ(λ);

note that each φm satisfies the same properties as φ; that is, φm is a positive, even Schwartz

function such that φm (0) = 1 and the Fourier transform φ̂m (ξ) is supported in the interval
[−ε, ε].



18 IGOR PROKHORENKOV AND KEN RICHARDSON

For a section ω ∈ Γ (M,E)ρ that is supported on the complement of the 2ε -neighborhood
of Crit(V ) ,

φm (Ds)ω =
1

2π

∫ ε

−ε
φ̂m (t)

(
eitDsω

)
dt

=
1

2π

∫ ε

−ε
φ̂m (t) (cos (tDs)ω) dt since φ̂m is even

=
1

2π

∫ ε

−ε
φ̂m (t)

(
cos
(
t
√
A
)
ω
)
dt

= φm

(√
A
)
ω. (5.5)

By (5.4), the operator
√
A is positive and has operator norm is bounded below by Cs√

2
for

s sufficiently large. Thus, the operator norm of φm

(√
A
)

(as an operator from H to itself)

is bounded above by

cm (s) = sup

{
|φm (λ)| : λ ≥ Cs√

2

}
.

It is clear that cm (s) is rapidly decreasing as s→∞. By (5.5),

‖φm (Ds)ω‖2 ≤ cm (s) ‖ω‖2

for every ω ∈ Γ (M,E)ρ supported on the complement of a 2ε -neighborhood of Crit (V ).
Next, let Lp = Lp (Γ (M,E)ρ) denote the Lp-norm closure of Γ (M,E)ρ, and let W k =

W k (Γ (M,E)ρ) denote the closure of the space of such sections under the Sobolev (k, 2) -

norm. By the transversally elliptic estimates (Lemma 5.1), the operator norm of (1 +D2
s)
−1

:
W k −→ W k+2 is bounded by a polynomial in s. The ordinary Sobolev imbedding theorem

implies that (1 +D2
s)
−k

: L2 −→ L∞ is a bounded map whose operator norm is bounded
by a polynomial in s if k > n

4
. Using duality and essential self-adjointness of Ds, we see

that (1 +D2
s)
−k

: L1 −→ L2 is also a bounded map whose operator norm is bounded by a
polynomial in s whenever k > n

4
. Note that all of the statements above hold for the operator

A as well as for D2
s . Now, given a section ω ∈ Γ (M,E)ρ supported on the complement of a

2ε-neighborhood of Crit (V ) and k > n
4
,

‖φ (Ds)ω‖∞ =
∥∥∥φ(√A)ω∥∥∥

∞∥∥∥(1 + A)−k (1 + A)k φ
(√

A
)

(1 + A)k (1 + A)−k ω
∥∥∥
∞

≤
∥∥∥(1 + A)−k

∥∥∥
L2→L∞

ck (s)
∥∥∥(1 + A)−k ω

∥∥∥
2

≤
∥∥∥(1 + A)−k

∥∥∥
L2→L∞

ck (s)
∥∥∥(1 + A)−k

∥∥∥
L1→L2

‖ω‖1

≤ p (s) ck (s) ‖ω‖1

where p (s) is a polynomial in s. Next, since φ is rapidly decreasing, φ (Ds) has a continuous
kernel ks (x, y) (Lemma ???), and we have the inequality

‖ks (x, ·)‖∞ ≤ sup∫
‖ω‖=1,x∈M

∥∥∥∥∫
M

ks (x, y) ω (y)ωvol (y)

∥∥∥∥ ≤ p (s) ck (s)
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from the above. Thus, as s → ∞, ks (x, y) → 0 uniformly for y in the complement of a 2ε
-neighborhood of Crit(V ) and x ∈M . �

6. Local calculations for the equivariant index

6.1. Index of the reduced transversal Dirac operator. As in Section 2.3, suppose that
the compact Lie group G acts on the closed, connected Riemannian manifold M of dimension
n, where the dimensions of the orbits are not all the same. We assume that G acts by
isometries. Let {V1, ..., Vk} be a set of vector fields on M induced from an orthonormal basis
of g. Let E be a graded, self-adjoint Cl (TM) module over M , and let c : TM →Hom(E,E)
denote the Clifford multiplication. Let D : Γ (M,E)→ Γ (M,E) be ordinary Dirac operator

associated to this data. We consider the reduced Dirac operator D̂

D̂ = D −
k∑
j=1

c (Vj)∇Vj .

Next, let V be a fundamental vector field on M induced by an element v ∈ g. Let

D̂s = D̂ + isc (V ) .

Then

D̂2
s = D̂2 + s

(
ic (V ) D̂ + iD̂c (V )

)
+ s2 |V |2 .

Lemma 6.1. With notation as above,

D̂2 =

c (V ) D̂ + D̂c (V ) =

Proof. Let {E1, ..., En} be a local framing of TM near a point x ∈M .

D̂2 =

(
D −

k∑
j=1

c (Vj)∇Vj

)2

=

(
n∑

m=1

c (Em)∇Em −
k∑
j=1

c (Vj)∇Vj

)2

= D2 −
n∑

m=1

k∑
j=1

c (Em) c (∇EmVj)∇Vj

−
n∑

m=1

k∑
j=1

c (Em) c (Vj)∇Em∇Vj −
n∑

m=1

k∑
j=1

c (Vj) c
(
∇VjEm

)
∇Em

−
n∑

m=1

k∑
j=1

c (Vj) c (Em)∇Vj∇Em +
k∑
j=1

k∑
l=1

c (Vj) c
(
∇VjVl

)
∇Vl

+
k∑
j=1

k∑
l=1

c (Vj) c (Vl)∇Vj∇Vl .
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Simplifying,

D̂2 = D2 −
n∑

m=1

k∑
j=1

c (Em) c (∇EmVj)∇Vj

−
n∑

m=1

k∑
j=1

c (Em) c (Vj)∇Em∇Vj −
n∑

m=1

k∑
j=1

c (Vj) c
(
∇VjEm

)
∇Em

−
n∑

m=1

k∑
j=1

c (Vj) c (Em)∇Em∇Vj −
n∑

m=1

k∑
j=1

c (Vj) c (Em)∇[Em,Vj ] −
n∑

m=1

k∑
j=1

c (Vj) c (Em)R (Em, Vj)

+
k∑
j=1

k∑
l=1

c (Vj) c
(
∇VjVl

)
∇Vl

+
k∑
j=1

k∑
l=1

c (Vj) c (Vl)∇Vj∇Vl .

Note that ∇Vj = LVj +Aj, where LVj denotes the Lie derivative in direction Vj and Aj is an
endomorphism of E. Also, LVj commutes with the Dirac operator D. We substitute

D̂2 =

(
D −

k∑
j=1

c (Vj)∇Vj

)2

=

(
n∑

m=1

c (Em)∇Em −
k∑
j=1

c (Vj)LVj −
k∑
j=1

c (Vj)Aj

)2

= D2 +

(
k∑
j=1

c (Vj)LVj

)2

+

(
k∑
j=1

c (Vj)Aj

)2

−
k∑
j=1

(c (Vj)D +D ◦ c (Vj))LVj −
k∑
j=1

(D ◦ c (Vj)Aj + c (Vj)AjD)

+
k∑
j=1

k∑
l=1

(
c (Vj) c

(
LVjVl

)
Al + c (Vj) c (Vl)

(
LVjAl

))
+

k∑
j=1

k∑
l=1

(c (Vj) c (Vl)Al + c (Vl)Alc (Vj))LVj .



PERTURBATIONS OF EQUIVARIANT DIRAC OPERATORS 21

Thus

D̂2 = D2 +

(
k∑
j=1

c (Vj)LVj

)2

+

(
k∑
j=1

c (Vj)Aj

)2

−
k∑
j=1

(c (Vj)D +D ◦ c (Vj))LVj −
k∑
j=1

(D ◦ c (Vj)Aj + c (Vj)AjD)

+
k∑
j=1

k∑
l=1

(
c (Vj) c ([Vj, Vl])Al + c (Vj) c (Vl)

(
LVjAl

))
+

k∑
j=1

k∑
l=1

(c (Vj) c (Vl)Al + c (Vl)Alc (Vj))LVj .

From the Appendix, c (V ) ◦D +D ◦ c (V ) = −2∇V − div (V ) + c (d (V ∗)), so that

c (V ) ◦D +D ◦ c (V ) = −2∇V + c (d (V ∗))

= −2LV − 2AV + c (d (V ∗))

if V is a fundamental vector field, and if AV is the endomorphism defined by

∇V = LV + AV .

Thus,

D̂2 = D2 +

(
k∑
j=1

c (Vj)LVj

)2

+

(
k∑
j=1

c (Vj)Aj

)2

−
k∑
j=1

(
−2LVj − 2Aj + cd (V ∗)

)
LVj −

k∑
j=1

(D ◦ c (Vj)Aj + c (Vj)AjD)

+
k∑
j=1

k∑
l=1

(
c (Vj) c ([Vj, Vl])Al + c (Vj) c (Vl)

(
LVjAl

))
+

k∑
j=1

k∑
l=1

(c (Vj) c (Vl)Al + c (Vl)Alc (Vj))LVj .

�

7. Appendix

7.1. Proof of lemma ??.

Proof. We have

(Ds)
2 −D2 = s (ic (V ) ◦D + iD ◦ c (V )) + s2 |V |2 .

Write V =
∑
Vjej in terms of a local orthonormal, isochronous frame e1, e2, ... of the tangent

bundle, corresponding to geodesic normal coordinate vector fields ej = ∂j at the origin of
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the coordinate system. At the origin of the coordinate system, we have

ZD +DZ = ic (V ) ◦D + iD ◦ c (V ) (7.1)

= i
∑
j,k

Vjc (ej) c (ek)∇k + i
∑
j,k

c (ek)∇k ◦ Vjc (ej) , and since {ej} is isochronous

= i
∑
j,k

Vjc (ej) c (ek)∇k + i
∑
j,k

Vjc (ek) c (ej)∇k + i
∑
j,k

c (ek) c (ej) ∂kVj

= −2i
∑
j

Vj∇j − i
∑
j

∂jVj + i
∑
j 6=k

c (ek) c (ej) ∂kVj, since {c (ej) , c (ek)} = δjk

= −2i∇V − i

(
div (V )−

∑
j

Vj
∑
k 6=j

〈∇kej, ek〉

)
+ i
∑
j 6=k

c (ek) c (ej) ∂kVj

= −2i∇V − idiv (V ) + i
∑
j 6=k

c (ek) c (ej) ∂kVj since {ej} is isochronous

= −2i∇V − idiv (V ) + ic (d (V ∗)) ,

where by c (d (V ∗)) we imply that we have used the inverse of the symbol map σ to convert
the two-form d (V ∗) to a Clifford algebra element. For example, σ (e1e2) = c (e1) c (e2) 1 =
(dx1 ∧ −dx1y) (dx2 ∧ −dx2y) 1 = dx1∧dx2, so we define c (dx1 ∧ dx2) = c (e1e2) at the origin.
Now, since the last expression is coordinate-free, we conclude that

ZD +DZ = −2i∇V − idiv (V ) + ic (d (V ∗))

at all points. �

7.2. Proof of lemma ??.

Proof. A Killing vector field X can be lifted to a vector field X on the frame bundle, so that
X covers X and is invariant under the SO (n) bundle. The vector field X lifts uniquely to a

vector field X̂ on the principal spin bundle F̃ . Thus it acts on any bundle associated to F̃ ,
such as the spin bundle. Let X be an infinitesimal isometry. If g is the metric tensor, then
LXg = 0. If Y , Z are any two tensor fields of the same type, then

X 〈Y, Z〉 = 〈LXY, Z〉+ 〈Y,LXZ〉
= 〈∇XY, Z〉+ 〈Y,∇XZ〉 .

Thus AX = LX −∇X is skew-symmetric and of degree zero, since 〈AXY, Z〉 = −〈Y,AXZ〉 .
Hence its action on Γ (TM) comes from the endomorphism (also called AX) of TM . Choose
a basis {ei} of TxM , and we may identify AX with the element aX ∈ o (n) by iden-
tifying TxM with Rn using the basis . Under this identification antisymmetric matrix

aX =
(

(aX)ij

)
corresponds to an endomorphism AX = 1

4

∑
(aX)ij eiej (see Lemma 4.8 in

[42] for calculations).
Let λ : Spin (n) → SO (n) be the double cover, and let dλ : spin (n) → o (n) be the

differential map on the Lie algebras. Observe that spin (n) ∼= Cl2 (Rn), and the Lie bracket
induced on Cl2 (Rn) is [a, b] = ab − ba (using Clifford multiplication). For all v ∈ Rn ,
z ∈ Spin (n),

dλ (z) (v) = zv − vz,
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where z is thought of as an element of Cl2 (Rn) and v is thought of as an element of Cl1 (Rn).
Hence

dλ

(
1

4

∑
(aX)ij eiej

)
(v) =

[
1

4

∑
(aX)ij eiej, v

]
= aXv,

so that

AX = LX −∇X =
1

4

∑
(aX)ij eiej.

Next, given a Killing field X and vector field Y ,

AXY = LXY −∇XY

= [X, Y ]− [X, Y ]−∇YX

= −∇YX.

Thus, given any vector field Z,

〈AXY, Z〉 = −〈∇YX,Z〉 ,

so AX = − (∇X)#. This implies

(aX)ij = −〈∇eiX, ej〉 .
Thus,

AX = LX −∇X = −1

4

∑
〈∇eiX, ej〉 eiej

= −1

4

∑
ei (〈∇eiX, ej〉 ej)

= −1

4

∑
ei (∇eiX)

= −1

4

∑
ei (∂iXj) ej if {ej} is isochronous

= −1

4
c (d (X∗))

We have therefore that

LX = ∇X −
1

4
c (d (X∗)) (7.2)

if X is a Killing vector field. �

7.3. Proof of lemma ??.

Proof. First we will write down all the formulas necessary in our calculations. Let {ei}be a
synchronous framing at p ∈M , then [∇V , c (ei)] = 0 at p for each i. In this framing we have
the following well-known formulas:

[LV ,∇Y ] = ∇LV Y = ∇[V,Y ], (7.3)

LV ei =
∑
j

[Vjej, ei] = −
∑
j

(∂iVj) ej at p, (7.4)

and

[V, ei] = ∇V ei −∇iV = −∇iV. (7.5)
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In addition, we can combine the formula D ◦ c (V ) + c (V ) ◦D = −2iLV + i
2
c (d (V ∗)) (see

(??)) with (??) to obtain

LV =
1

2
∇V −

1

4
(D ◦ c (V ) + c (V ) ◦D) . (7.6)

Then

LV ◦D −D ◦ LV =
∑
LV ◦ (c (ei)∇i)− (c (ei)∇i) ◦ LV

=
∑

[LV , c (ei)] ◦ ∇i + c (ei)∇LV ei by the formula (7.3)

=
∑
i,j

[(
∇V −

1

4
c (ej) c (∇jV )

)
, c (ei)

]
∇i +

∑
i

c (ei)∇LV ei

=
∑
i,j,k

−1

4
(∂jVk) [c (ej) c (ek) , c (ei)]∇i +

∑
i

c (ei)∇LV ei

=
∑
i,j

1

2
(∂jVi) c (ej)∇i −

∑
i,k

1

2
(∂iVk) c (ek)∇i +

∑
i

c (ei)∇LV ei

=
∑
i 6=j

1

2
(∂jVi − ∂iVj) c (ej)∇i +

∑
i

c (ei)∇LV ei

=
∑
i 6=j

1

2
(∂jVi − ∂iVj) c (ej)∇i −

∑
i,j

(∂iVj) c (ei)∇j

= −
∑
i 6=j

1

2
(∂jVi + ∂iVj) c (ej)∇i −

∑
i

(∂iVi) c (ei)∇i

By the definition of the Killing field LV (g) = 0. Thus

0 = LV (g(ei, ej))

= LV (g) (ei, ej) + g (LV (ei), ej) + g (ei,LV (ej))

= g ([V, ei] , ej) + g (ei, [V, ej])

= −∂iVj − ∂jVi.

Thus for a Killing field at the origin of synchronous frame ∂iVj + ∂jVi = 0 and ∂iVi = 0.
Now we see that

LV ◦D −D ◦ LV = −
∑
i 6=j

1

2
(∂jVi + ∂iVj) c (ej)∇i −

∑
i

(∂iVi) c (ei)∇i = 0.

Now let us check that LV commutes with c(V ). In our computation we used the fact that
Lie derivative with respect to a Killing field could be lifted to a Lie derivative on the spin
bundle by LV ◦ c = c ◦ LV . The operator LV commutes with Hs because it commutes with
both D and c (V ) . �



PERTURBATIONS OF EQUIVARIANT DIRAC OPERATORS 25

7.4. Miscellaneous computations. Next, for future reference, we compute the commuta-
tors [D,∇V ] and [c (V ) ,∇V ]. Using the same coordinate system as above,

[D,∇V ] = D ◦ ∇V −∇V ◦D
=

∑
j,k

c (ek)∇k ◦ Vj∇j − Vj∇j ◦ c (ek)∇k, so by isochronicity

=
∑
j,k

(∂kVj) c (ek)∇j + Vjc (ek)∇k∇j − Vjc (ek)∇j∇k

=
∑
j,k

(∂kVj) c (ek)∇j + Vjc (ek) (∇k∇j −∇j∇k)

=
∑
j,k

(∂kVj) c (ek)∇j + c (V yK) ,

where K is the curvature two-form. Also,

[c (V ) ,∇V ] = c (V )∇V −∇V ◦ c (V )

=
∑
j,k

VkVjc (ek)∇j − Vj∇j ◦ Vkc (ek)

= −
∑
j,k

Vj (∂jVk) c (ek)

Also, we compute D2: (same isochronous coordinate system)

D2 =
∑
j,k

c (ek)∇k ◦ c (ej)∇j

=
∑
j,k

c (ek) c (ej)∇k∇j

= −
∑
j

∇2
j +

∑
k<j

c (ek) c (ej) (∇k∇j −∇j∇k)

= −
∑
j

∇2
j +

∑
k<j

c (ek) c (ej)
(
∇k∇j −∇j∇k −∇[ek,ej ]

)
= −

∑
j

∇2
j +

∑
k<j

c (ek) c (ej)K (ek, ej)

= −
∑
j

∇2
j + c (K) ,

where K is the curvature two-form.
Suppose that V is a Killing vector field. Then div (V ) = 0, and ∇V commutes with D

and with Z = ic (V ). Thus, D2 + s2Z2 = D2 + s2 |V |2 and ZD + DZ are simultaneously
diagonalizable. So, given an eigenspace En ⊂ ΓE of ZD + DZ, the restriction of Ds to En
localizes at the singularities of the vector field V .

In general, we can do this if ZD + DZ = A + B, where A is first order, B is zeroth
order, and [A,D] = [A,B] = [A,Z] = 0. Thus, the equations read [ZD +DZ −B,D] =
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[ZD +DZ −B,B] = [ZD +DZ −B,Z] = 0, or

(ZD +DZ −B)D −D (ZD +DZ −B) = ZD2 −D2Z −BD +DB = 0

(ZD +DZ −B)B −B (ZD +DZ −B) = ZDB +DZB −BZD −BDZ = 0

(ZD +DZ −B)Z − Z (ZD +DZ −B) = DZ2 − Z2D −BZ + ZB = 0.
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[47] H.-K.Wai, Witten-Helffer-Sjöstrand theory for S1-equivariant cohomology, Trans. Amer. Math. Soc. 351

(1999), no. 6, 2141–2182.
[48] E. Witten, Supersymmetry and Morse Theory, J. Differ. Geometry, 17, 661-692 (1982).
[49] E. Witten, Index of Dirac operators, Quantum fields and strings: a course for mathematicians, Vol. 1,

475–511, Amer. Math. Soc., Providence, RI, 1999.
[50] E. Witten, The index of the Dirac operator in loop space. Elliptic curves and modular forms in algebraic

topology (Princeton, NJ, 1986), 161–181, Lecture Notes in Math., 1326, Springer, Berlin, 1988
[51] S. Wu, Equivariant holomorphic Morse inequalities. II. Torus and non-abelian group actions. J. Differ-

ential Geom. 51 (1999), no. 3, 401–429.
[52] S. Wu, W. Zhang, Equivariant holomorphic Morse inequalities. III. Non-isolated fixed points, Geom.

Funct. Anal. 8 (1998), no. 1, 149–178.



28 IGOR PROKHORENKOV AND KEN RICHARDSON

Department of Mathematics, Texas Christian University, Box 298900, Fort Worth, Texas
76129

E-mail address: i.prokhorenkov@tcu.edu, k.richardson@tcu.edu


	1. The Dirac Operator
	2. Examples of transversally elliptic operators
	2.1. Foliation case
	2.2. General case - Lifted Transversal Dirac Operator
	2.3. General Case - Reduced Dirac Operator
	2.4. Locally Transverse Dirac operators

	3. Examples
	4. Transversally elliptic operators and their index
	5. Localization Theorem
	6. Local calculations for the equivariant index
	6.1. Index of the reduced transversal Dirac operator

	7. Appendix
	7.1. Proof of lemma ??
	7.2. Proof of lemma ??
	7.3. Proof of lemma ??
	7.4. Miscellaneous computations

	References

