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Abstract. We give examples of foliations on suspensions and comment on their topological
and geometric properties

1. Idea of foliation by suspension

Here is the simplest example of foliation by suspension. Let X be a manifold of dimension
q, and let f : X → X be a bijection. Then we define the suspension M = S1 ×f X as the
quotient of [0, 1]×X by the equivalence relation (1, x) ∼ (0, f (x)).

M = S1 ×f X = [0, 1]×X� ∼
Then automatically M carries two foliations: F2 consisting of sets of the form F2,t =
{(t, x)∼ : x ∈ X} and F1 consisting of sets of the form F2,x0 = {(t, x) : t ∈ [0, 1] , x ∈ Ox0},
where the orbit Ox0 is defined as

Ox0 =
{
..., f−2 (x0) , f−1 (x0) , x0, f (x0) , f 2 (x0) , ...

}
,

where the exponent refers to the number of times the function f is composed with itself.
Note that Ox0 = Of(x0) = Of−2(x0), etc., so the same is true for F1,x0 . Understanding the
foliation F1 is equivalent to understanding the dynamics of the map f . If the manifold X is
already foliated, you can use the construction to increase the codimension of the foliation,
as long as f maps leaves to leaves.

The first set of examples concerns foliations of a map from the circle to itself.

Example A: Let X = S1, let α be a fixed real number, and let f : S1 → S1 be defined
by f (z) = eiαz. The S1 ×f S1 is topologically the 2-torus. It is a cylinder with the
two ends identified with a twist. Note that if α is a rational multiple of 2π, then all
of the leaves are closed. If α is irrational, then all of the leaves are dense. This is
called a Kronecker foliation. Note that all leaves have no holonomy.

Example B: Let X = S1, let f : S1 → S1 be defined by f (z) = z. The S1 ×f S1 is
topologically the Klein bottle. It is a cylinder with the two ends identified with a
reflection. Observe that all leaves are closed — two of them have z2 holonomy, and
the others have trivial holonomy.

The next example is a codimension-2 foliation on a 3-manifold.

Example C: (This one is from [8] and [9].) Consider the one-dimensional foliation ob-
tained by suspending an irrational rotation on the standard unit sphere S2. On S2 we
use the cylindrical coordinates (z, θ), related to the standard rectangular coordinates

by x′ =
√

(1− z2) cos θ, y′ =
√

(1− z2) sin θ, z′ = z. Let α be an irrational multiple

Date: August, 2009.
1991 Mathematics Subject Classification. 53C12, 58G11, 58G18, 58G25.

1



2 KEN RICHARDSON

of 2π, and let the three-manifold M = [0, 1] × S2/ ∼, where (1, z, θ) ∼ (0, z, θ + α).
Here the function f : S2 → S2 is

f (z, θ) = (z, θ + α) .

Endow M with the product metric on Tz,θ,tM ∼= Tz,θS
2×TtR. Let the foliation F =

F1 be defined by the immersed submanifolds Lz,θ = ∪n∈Z [0, 1]× {z} × {θ + α} (not
unique in θ). The leaf closures Lz for |z| < 1 are two-dimensional, and the closures
corresponding to the poles (z = ±1) are one-dimensional. The basic functions are
functions of z alone.

Example D: This foliation is a suspension of an irrational rotation of S1 composed
with an irrational rotation of S2 on the manifold S1 × S2. As in Example ??,
on S2 we use the cylindrical coordinates (z, θ), related to the standard rectangu-

lar coordinates by x′ =
√

(1− z2) cos θ, y′ =
√

(1− z2) sin θ, z′ = z. Let α
be an irrational multiple of 2π, and let β be any irrational number. We con-
sider the four-manifold M = [0, 1] × S2 × [0, 1] / ∼, where (0, z, θ, t) ∼ (1, z, θ, t),
(1, z, θ, s) ∼ (0, z, θ + α, s+ βmod 1). Let the foliation F = F1 be defined by the
immersed submanifolds Lz,θ,s = ∪n∈Z [0, 1] × {z} × {θ + α} × {s+ β} (not unique
in θ or s). The leaf closures Lz for |z| < 1 are three-dimensional, and the closures
corresponding to the poles (z = ±1) are two-dimensional.

The following two examples are related to an example in [2]. The first is a codimension
two foliation that does not admit a Riemannian foliation structure, and the second is a
codimension two Riemannian foliation that is not taut.

Example E: Consider the flat torus T 2 = R2�Z2. Consider the map F : T 2 → T 2

defined by

F

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
mod 1

Let M = [0, 1] × T 2� ∼, where (1, a) ∼ (0, F (a)). Let F1 be the foliation whose
leaves are of the form La = {(t, p)∼ ∈M : t ∈ [0, 1] , p ∈ Oa}. This is an example of
an Anosov foliation.

Example F: Consider the flat torus T 2 = R2�Z2. Consider the map F : T 2 → T 2

defined by

F

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
mod 1

Let M = [0, 1]×T 2� ∼, where (1, a) ∼ (0, F (a)). Let v, v′ be orthonormal eigenvec-

tors of the matrix above, corresponding to the eigenvalues 3+
√

5
2

, 3−
√

5
2

, respectively.
Let the linear foliation F be defined by the vector v′ on each copy of T 2.

2. More general suspensions

The most general type of suspension is as follows. Let Y be a manifold with fundamental

group π1 (Y ) and universal cover Ỹ , let X be another manifold, and let φ : π1 (Y ) →
Maps (X), where by Maps we mean some group of bijective maps from X to itself, such as
continous maps, smooth maps, analytic maps, isometries, etc. Then we define the suspension
M = Y ×φ X by

M = Y ×φ X = Ỹ ×X�π1 (Y ) ,
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where g ∈ π1 (Y ) acts on Ỹ ×X by g (ỹ, x) = (ỹ · g−1, φ (g) (x)), where ỹ is mapped to ỹ ·g−1

by the deck transformation corresponding to g−1 ∈ π1 (Y ). Note that this quotient is the
same as the quotient by the equivalence relation (ỹ · g, x) ∼ (ỹ, φ (g) (x)). The foliations
of the suspension M come from choosing the immersed Y -parameter submanifolds or the
immersed X-parameter submanifolds, or other submanifolds of these submanifolds. The
standard foliation to choose is the foliation F1 of Y -parameter submanifolds, that is sets of

the form Lx =
{

[(ỹ, x′)] : ỹ ∈ Ỹ , x′ ∈ Ox
}

, where Ox = {φ (g) (x) : g ∈ π1 (Y )} ⊂ X. Note

that this generalizes the previous section, where in that section Y = S1 = [0, 1]� (0 = 1),
π1 (Y ) = Z, and the homomorphism is φ (n) (x) = fn (x).

Remark 2.1. If you have any discrete, finitely-generated group G of bijective maps on X,
there always exists a closed manifold Y and a homomorphism φ : π1 (Y )→ G. This follows
from the fact that every such group can be realized as the fundamental group of a closed 4-
manifold, where φ can be then taken to be the identity. In general one may usually take Y to
be simpler. For example if {g1, g2, g3} generates G, then one could take Y to be the connected
sum of three copies of S2 × S1, which has fundamental group the free product Z ∗Z ∗Z, and
the homomorphism could be generated by φ (nj) = g

nj

j in the group, for j = 1, 2, 3.

Remark 2.2. The choice of group of maps determines the transverse type of foliation F1.
If the homomorphism φ maps to isometries of X, then F1 is a Riemannian foliation. If φ
maps to morphisms of a Kähler manifold X, then F1 is a transversely Kähler foliation.

We now give two examples of these more general suspensions.
The following example is a codimension two transversally oriented Riemannian foliation

in which all the leaf closures have codimension one, and the leaf closure foliation is not
transversally orientable. There are two leaf closures with Z2 holonomy.

Example G: This foliation is the suspension of an irrational rotation of the flat torus
and a Z2-action. Let X be any closed Riemannian manifold such that π1(X) = Z ∗Z
— the free group on two generators {α, β}. We normalize the volume of X to be

1. Let X̃ be the universal cover. We define M = X̃ × S1 × S1�π1(X), where

π1(X) acts by deck transformations on X̃ and by α (θ, φ) = (2π − θ, 2π − φ) and
β (θ, φ) =

(
θ, φ+

√
2π
)

on S1 × S1. We use the standard product-type metric. The

leaves of F are defined to be sets of the form
{

(x, θ, φ)∼ |x ∈ X̃
}

. Note that the

foliation is transversally oriented. The leaf closures are sets of the form

Lθ =
{

(x, θ, φ)∼ |x ∈ X̃, φ ∈ [0, 2π]
}⋃{

(x, 2π − θ, φ)∼ |x ∈ X̃, φ ∈ [0, 2π]
}
.

The next example is a codimension two Riemannian foliation with dense leaves, such that
some leaves have holonomy but most do not.

Example H: This Riemannian foliation is a suspension of a pair of rotations of the
sphere S2. Let X be any closed Riemannian manifold such that π1(X) = Z ∗ Z —
the free group on two generators {α, β}. We normalize the volume of X to be 1.

Let X̃ be the universal cover. We define M = X̃ × S2�π1(X). The group π1(X)

acts by deck transformations on X̃ and by rotations on S2 in the following ways.
Thinking of S2 as imbedded in R3, let α act by an irrational rotation around the z-
axis, and let β act by an irrational rotation around the x-axis. We use the standard
product-type metric. As usual, the leaves of F are defined to be sets of the form
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(x, v)∼ |x ∈ X̃

}
. Note that the foliation is transversally oriented, and a generic leaf

is simply connected and thus has trivial holonomy. Also, the every leaf is dense. The
leaves {(x, (1, 0, 0))∼} and {(x, (0, 0, 1))∼} have nontrivial holonomy; the closures of
their infinitessimal holonomy groups are copies of SO(2).

3. Cohomology

3.1. Basic Cohomology. Note that the basic forms are the smooth forms on the whole
manifold M that only depend locally on the transverse coordinates (if one chooses a foliation
chart with coordinates adapted to the foliation. In other words, a form β ∈ Ω (M) is basic
for the foliation F if i (X) β = 0 and i (X) dβ = 0 for all vectors X tangent to the leaves,
i.e. X ∈ TF . Here, i (X) means interior product with the vector X, a pointwise operator
that is linear and that depends linearly on X. If α is a k-form, then i (X)α is the (k − 1)-
form defined by i (X)α (v1, ..., vk−1) = α (X, v1, ..., vk−1). In local coordinates, if for instance

α = α (y) dy1∧...∧dyk, then i
(

∂
∂yj

)
α (y) dy1∧...∧dyk = (−1)j−1 α (y) dy1∧...∧ d̂yj∧...∧dyk,

where the ·̂ means that term is omitted. Let Ω (M,F) denote the space of basic forms, and
let Ωk (M,F) denote the space of basic k-forms.

From the definition, we see that since d2 = 0, if β is basic, then also dβ is basic. (
Proof: if β is basic and α = dβ, then for all X ∈ TF we have i (X)α = i (X) dβ = 0, and
i (X) dα = i (X) d2β = i (X) 0 = 0. ) Hence

dk := d : Ωk (M,F)→ Ωk+1 (M,F)

with d2 = 0. We may take real or complex-valued functions. We define the basic cohomol-
ogy groups to be the quotient groups (or quotient vector spaces, since each Ωk (M,F) is a
vector space (infinite-dimensional) and d is a linear transformation) defined by

Hk
b (M,F) =

ker dk

Im dk−1
.

One may also think of these as topological vector spaces with the quotient topology, giving
first Ωk (M,F) the smooth topology (i.e. as a Fréchet space - Ok don’t go there).

3.2. Leafwise cohomology. Consider the bigrading on the set of all forms as follows.
Given any Riemannian metric on M , let TF , NF ⊂ TM denote the tangent and normal
bundles of the foliation, and let T ∗F , N∗F ⊂ T ∗M denote the cotangent and conormal
bundles of the foliation. Observe that only TF and N∗F may be defined independent of the
metric; the other two bundles mentioned depend on the choice of metric. Let ∧i,jT ∗M =
∧iN∗F ⊗ ∧jT ∗F ⊂ ∧i+jT ∗M be a bigrading of forms at a point, so that

∧kT ∗M =
⊕
i+j=k

∧i,jT ∗M

Ωk (M) = Γ
(
∧kT ∗M

)
=
⊕
i+j=k

Ωi,j (M,F) .

If we choose a local orthonormal frame (e1, ..., eq, eq+1, ..., ep+q) of TM such that NF =
span {e1, ..., eq}, TF = span {eq+1, ..., ep+q}, we see that

∧i,jT ∗M = span
{
e∗k1 ∧ ... ∧ e

∗
ki
∧ e∗l1 ∧ ... ∧ e

∗
lq : 1 ≤ k1 < ... < ki ≤ q and q + 1 ≤ l1 < ... < lj ≤ p+ q

}
.
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Note that the differential d : Ωk (M) → Ωk+1 (M) has the property that for a general
orthonormal frame (ej),

de∗p = −
∑

Γ p
ij e
∗
i ∧ e∗j ,

where Γ p
ij are the Christoffel symbols defined by ∇ei

ej =
∑

Γ p
ij ep. Thus we expect the

differential to split into four possible parts:

d : Ωi,j (M,F)→ Ωi+2,j−1 (M,F)⊕ Ωi+1,j (M,F)⊕ Ωi,j+1 (M,F)⊕ Ωi−1,j+2 (M,F)

d = d2,−1 + d1,0 + d0,1 + d−1,2.

To keep track of indices, let Roman indices (i, j, k, etc) refer to the leafwise vectors, and
let the Greek indices (α, β, γ, etc) refer to the the normal vectors. Due to the integrability
condition [ei, ej] ⊂ TF , we have

de∗α (ei, ej) = ei (e
∗
α (ej))− ej (e∗α (ei))− e∗α ([ei, ej]) = 0− 0− 0,

so that d−1,2 = 0 always. Thus,

d = d2,−1 + d1,0 + d0,1,

Ωi+2,j−1⊕and where d2,−1 is also zero if and only if the normal bundle is integrable. Since
d2 = 0, we see that since d2 maps Ωi,j to Ωi+4,j−2⊕Ωi+3,j−1⊕Ωi+2,j ⊕Ωi+1,j+1⊕Ωi,j+2, each
piece must be zero, so that

d2
2,−1 = 0

d2,−1d1,0 + d1,0d2,−1 = 0

d2
1,0 + d2,−1d0,1 + d0,1d2,−1 = 0

d1,0d0,1 + d0,1d1,0 = 0

d2
0,1 = 0

The last differential is called the leafwise derivative: we let dF = d0,1, and we usually restrict
this to leafwise differential forms, that is elements of Ω0,∗ (M,F). The resulting leafwise
cohomology groups (or topological vector spaces) are

Hk
F (M) =

ker dkF
Im dk−1

F
,

where

dkF = d0,1 : Ω0,k (M,F)→ Ω0,k+1 (M,F) .

One can use the bigrading and such differentials to produce a spectral sequence for the
foliation.

There are many other types of cohomology groups associated to foliations.

3.3. Remarks about these cohomology groups. Many of the facts about standard de
Rham cohomology do not hold for these more general kinds of cohomology theories. For
example, the dimensions of the cohomology spaces can be infinite, and the topologies on
these spaces do not have to be Hausdorff. Further, one does not usually have a foliation
version of Poincare duality.
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4. Molino theory

Let M be an n-dimensional, closed, connected, oriented Riemannian manifold without
boundary, and let F be a transversally–oriented, codimension q foliation on M for which the

metric is bundle–like. Let M̂ be the oriented transverse orthonormal frame bundle of (M,F),

and let p be the natural projection p : M̂ −→ M . The manifold M̂ is a principal SO(q)-

bundle overM . Given x̂ ∈ M̂ , let x̂g denote the well-defined right action of g ∈ SO(q) applied

to x̂. Associated to F is the lifted foliation F̂ on M̂ . The lifted foliation is transversally

parallelizable, and the closures of the leaves are fibers of a fiber bundle π̂ : M̂ −→ Ŵ . The

manifold Ŵ is smooth and is called the basic manifold (see [6, pp. 105-108, p. 147ff]). Let

F̂ denote the foliation of M̂ by leaf closures of F̂ .

Ẽ p∗E
↘ ↓

Ŵ
π̂←−

(
M̂, F̂

)
←↩ SO (q)

↓ 	 ↓p
W ←− (M,F)

Endow M̂ with the Sasakian metric gM +gSO(q), where gM is the pullback of the metric on
M , and gSO(q) is the standard, normalized, biinvariant metric on the fibers. By this, we mean
that we use the transverse Levi–Civita connection (see [6, p. 80ff]) to do the following. We

calculate the inner product of two horizontal vectors in Tx̂M̂ by using gM , and we calculate
the inner product of two vertical vectors using gSO(q). We require that vertical vectors are

orthogonal to horizontal vectors. This metric is bundle–like for both (M̂, F̂) and (M̂, F̂).

The transverse metric on (M̂, F̂) induces a well–defined Riemannian metric on Ŵ . The

group G = SO(q) acts by isometries on Ŵ according to π̂(x̂)g := π̂(x̂g) for g ∈ SO(q).

For each leaf closure L̂ ∈ F̂ and x̂ ∈ L̂, the restricted map p : L̂→ L is a principle bundle
with fiber isomorphic to a subgroup Hx̂ < SO(q), which is the isotropy subgroup at the

point π̂(x̂) ∈ Ŵ . The conjugacy class of this group is an invariant of the leaf closure L, and
the number of different dimensions of these groups is the number of different dimensions of
leaf closures of (M,F).

5. The mean curvature form and basic Laplacian

We assume (M,F , gM) is a Riemannian foliation with bundle-like metric compatible with
the Riemannian structure (M,F , gQ). For later use, we define the mean curvature one-form
κ and discuss the operator κby. Let

H =

p∑
i=1

π
(
∇M
fi
fi
)
,

where π : TM → NF is the bundle projection and (fi)1≤i≤p is a local orthonormal frame

of TF . This is the mean curvature vector field, and its dual one-form is κ = H[. Let
P : L2 (Ω (M)) → L2 (Ωb (M,F)) be the L2-orthogonal projection of all forms onto basic
forms. Let κb = Pκ be the basic projection of this mean curvature one-form. In the case of
a bundle-like metric, this form is smooth and calculated from κ by averaging over the leaf
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closures (see [7]). It turns out that κb is a closed form whose cohomology class in H1
b (M,F)

is independent of the choice of bundle-like metric (see [1]).
The easiest way to calculate κ is to use Rummler’s formula. If χF is the leafwise volume

form χF = e∗q+1 ∧ ...∧ e∗p+q ∈ Ω0,p or characteristic form of the foliation, then we have the
formula

dχF = −κ ∧ χF + ϕ0,

where ϕ0 ∈ Ω2,p−1 measures the lack of integrability of the normal bundle. We then see that

κ = (−1)p+1 χFydχF ,

where χFy means the (pointwise) adjoint of the wedge product operator χF∧ .
We have the following expression for δb, the L2-adjoint of d restricted to the space of basic

forms of a particular degree (see [10], [7]):

δb = Pδ

= ±∗d∗+ κby

= δT + κby,

where

• δT is the formal adjoint (with respect to gQ) of the exterior derivative on the transverse
local quotients.
• the pointwise transversal Hodge star operator ∗ is defined on all k-forms γ by

∗γ = (−1)p(q−k) ∗ (γ ∧ χF) ,

with χF being the leafwise volume form, the characteristic form of the foliation and

∗ being the ordinary Hodge star operator. Note that ∗2 = (−1)k(q−k) on k-forms.
• The sign ± above only depends on dimensions and the degree of the basic form.

The basic Laplacian ∆b corresponding to a bundle-like metric is defined to be

∆b = dδb + δbd : Ω∗b (M,F)→ Ω∗b (M,F) .

This operator and its spectrum depend on the choice of bundle-like metric. The kernel of
the basic Laplacian consists of basic-harmonic forms, and these forms generate the basic
cohomology (see [5], [7]).

The trace of the basic heat kernel on k-forms is

KB (t) =
∑
m≥0

e−λmt,

where 0 ≤ λ0 ≤ λ1 ≤ ... are the eigenvalues of ∆b restricted to Ωk
b (M,F).

Note that in a recent paper [3], it is mentioned that the twisted differentials

d̃ = d− 1

2
κb∧, δ̃ = δb −

1

2
κby.

give a new basic Laplacian

∆̃b = d̃δ̃ + δ̃d̃

whose spectrum does not depend on the choice of bundle-like metric (as long as the trans-

verse metric is fixed). Also, the basic cohomology groups H̃k
b (M,F) corresponding to the

differential d̃ satisfy Poincaré duality on transversally oriented Riemannian foliations, and
the dimensions of these cohomology groups are again independent of the choice of bundle-like
metric.
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6. Topological and geometric properties of examples

In this section I have repeated the definitions so the reader need not look back. A lot of
these examples are in my papers [8], [9].

Example A: Let X = S1, let α be a fixed real number, and let f : S1 → S1 be defined
by f (z) = eiαz. The S1 ×f S1 is topologically the 2-torus. It is a cylinder with the
two ends identified with a twist. Note that if α is a rational multiple of 2π, then
all of the leaves are closed. If α is irrational, then all of the leaves of the horizontal
foliation are dense. This is called a Kronecker foliation. Note that all leaves have no
holonomy.
In the case where α = p

q
(2π) with p

q
in lowest terms, let the torus be considered as

[0, 2π]× [0, 2π] with the sides identified accordingly, each leaf consists of q horizontal

lines, and the leaf space can be identified as the torus
[
0, 2π

q

]
× [0, 2π]. If α is an

irrational multiple of 2π, then every leaf is dense. The flat metric is bundle-like for
this foliation. Basic forms are {f (y) + g (y) dy}, where (x, y) ∈ S1 × S1 are the
coordinates of the foliation. If α is an irrational multiple of 2π, then f and g must
be constant. If α = p

q
(2π) as above, then we only must have that f and g are

periodic with period 2π
q

. The basic cohomology group dimensions in both cases are

h0
b = 1 = h1

b . The leafwise cohomology groups are very interesting for this example. If
α is an irrational multiple of 2π, then the leafwise cohomology groups can be infinite
dimensional and actually can be nonHausdorff, depending on the type of irrational
number α

2π
is (whether it is Liouville or not). See [4].

Example B: Let X = S1, let f : S1 → S1 be defined by f (z) = z. The S1 ×f S1 is
topologically the Klein bottle. It is a cylinder with the two ends identified with a
reflection. Observe that all leaves of the horizontal foliation are closed — two of them
have z2 holonomy, and the others have trivial holonomy. Again the basic forms must
be of the form {f (y) + g (y) dy : y ∈ S1}, but note that f (y) = f (y) , g (y) = −g (y)
are required. Every basic one-form is exact (because it integrates to zero), and so
the basic cohomology betti numbers are h0

b = 1, h1
b = 0.

Example C: One-dimensional foliation obtained by suspending an irrational rota-
tion on the standard unit sphere S2. On S2 we use the cylindrical coordinates
(z, θ), related to the standard rectangular coordinates by x′ =

√
(1− z2) cos θ,

y′ =
√

(1− z2) sin θ, z′ = z. Let α be an irrational multiple of 2π, and let the
three-manifold M = S2 × [0, 1] / ∼, where (z, θ, 0) ∼ (z, θ + α, 1). Endow M with
the product metric on Tz,θ,tM ∼= Tz,θS

2 × TtR. Let the foliation F be defined by
the immersed submanifolds Lz,θ = ∪n∈Z {z} × {θ + α} × [0, 1] (not unique in θ).
The leaf closures Lz for |z| < 1 are two-dimensional, and the closures corresponding
to the poles (z = ±1) are one-dimensional. This is a codimension-2 foliation on a
3-manifold. Here, SO(2) acts on the basic manifold, which is homeomorphic to a
sphere. In this case, the principal orbits have isotropy type ({e}), and the two fixed
points obviously have isotropy type (SO(2)). In this example, the isotropy types
correspond precisely to the infinitessimal holonomy groups.
The basic functions are functions of z alone, and the basic Laplacian on functions
is ∆B = − (1− z2) ∂2

z + 2z ∂z. The volume form on M is dz dθ dt, and the volume
of the leaf closure at z is 1

2π
√

1−z2 for |z| < 1. The eigenfunctions are the Legendre
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polynomials Pn (z) corresponding to eigenvalues m (m+ 1) for m ≥ 0. From this
information alone, one may calculate that the trace KB (t) of the basic heat operator
is

KB (t) =
∑
m≥0

e−m(m+1)t =
1√
4πt

(
π +

π

4
t+O

(
t2
))
.

The basic manifold Ŵ corresponding to this foliation is a sphere with points
described by orthogonal coordinates (z, ϕ) ∈ [−1, 1]× (−π, π]. As shown in [8], the

metric on Ŵ is given by 〈∂z, ∂z〉 = 1
1−z2 , 〈∂ϕ, ∂ϕ〉 =

4π2(1−z2)
4π2(1−z2)+z2

.

Let’s now calculate the Euler characteristic of this foliation. Since the foliation is
taut, the standard Poincare-type duality works, and H0

B (M) ∼= H2
B (M) ∼= R. It

suffices to check the dimension h1 of the cohomology group H1
B (M). Then the basic

Euler characteristic is χ (M,F) = 1 − h1 + 1 = 2 − h1. Smooth basic functions
are of the form f (z), where f (z) is smooth in z for −1 < z < 1 and is of the
form f (z) = f1 (1− z2) near z = 1 for a smooth function f1 and is of the form
f (z) = f2 (1− z2) near z = −1 for a smooth function f2. Smooth basic one-forms
are of the form α = g (z) dz + k (z) dθ, where g (z) and k (z) are smooth functions
for −1 < z < 1 and satisfy

g (z) = g1

(
1− z2

)
and

k (z) =
(
1− z2

)
k1

(
1− z2

)
(6.1)

near z = 1 and

g (z) = g2

(
1− z2

)
and

k (z) =
(
1− z2

)
k2

(
1− z2

)
near z = −1 for smooth functions g1, g2, k1, k2. A simple calculation shows that
ker d1 = im d0, so that h1 = 0. Thus, χ (M,F) = 2.
It is instructive to see how the trace of the heat kernel fits into this example. The
basic Hodge star ∗ (see either [5] or [7]) can be computed as follows:

∗dz =
(
1− z2

)
dθ

∗dθ = − 1

1− z2
dz

∗ (dz ∧ dθ) = 1.

We have already computed the asymptotics of the trace of the basic heat kernel on
functions (and thus on two forms as well, since ∗ commutes with the basic Laplacian
in the taut case). We now compute the asymptotics of the trace of the basic heat
operator on one-forms. The basic adjoint of d is δB = −∗d∗ on both one-forms and
two-forms, and we compute that

δB (g (z) dz + k (z) dθ) = −∗d∗ (g (z) dz + k (z) dθ)

= −∂z
((

1− z2
)
g (z)

)
δB (h (z) dz ∧ dθ) = −∗d∗ (h (z) dz ∧ dθ)

= −
(
1− z2

)
h′ (z) dθ.
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We then compute the basic Laplacian on one-forms:

∆B (g (z) dz + k (z) dθ) = (δBd+ dδB) (g (z) dz + k (z) dθ)

= − (∂z)
2 ((1− z2

)
g (z)

)
dz +

(
1− z2

)
k′′ (z) dθ.

The resulting eigenvalue problem separates into two eigenvalue problems for g(z) and
k(z). These are both special cases of the Jacobi differential equation; the eigenvalues
for g(z) are (n+ 2) (n+ 1) for n ≥ 0, and the eigenvalues for k(z) are (n− 1)n for
n ≥ 2. In the latter case the two zero eigenvalues (n = 0, 1) had to be thrown out
because the resulting eigenfunctions are not of the correct form (6.1). Thus, we have
that

tr
(
e−t∆

1
B

)
= 2

∑
n≥1

e−n(n+1)t,

which by Equation ?? is

tr
(
e−t∆

1
B

)
= 2tr

(
e−t∆

0
B

)
− 2

=
1√
4πt

(
2π +

π

2
t+O

(
t2
))
− 2.

Thus, as expected, the supertrace of the basic Laplacian on forms is

tr
(
e−t∆

0
B

)
− tr

(
e−t∆

1
B

)
+ tr

(
e−t∆

2
B

)
= 2 = χ (M,F) .

Observe that in this case, the form of the asymptotic expansion for one forms is
slightly different than that for functions. In particular, this example shows that the
orbit space can be dimension 1 (odd) and yet have nontrivial index.

Example D: This foliation is a suspension of an irrational rotation of S1 composed
with an irrational rotation of S2 on the manifold S1×S2. As in Example ??, on S2 we
use the cylindrical coordinates (z, θ), related to the standard rectangular coordinates

by x′ =
√

(1− z2) cos θ, y′ =
√

(1− z2) sin θ, z′ = z. Let α be an irrational multiple
of 2π, and let β be any irrational number. We consider the four-manifold M = S2 ×
[0, 1]× [0, 1] / ∼, where (z, θ, 0, t) ∼ (z, θ, 1, t), (z, θ, s, 0) ∼ (z, θ + α, s+ βmod 1, 1).
Endow M with the product metric on Tz,θ,s,tM ∼= Tz,θS

2×TsR×TtR. Let the foliation
F be defined by the immersed submanifolds Lz,θ,s = ∪n∈Z {z}×{θ + α}×{s+ β}×
[0, 1] (not unique in θ or s). The leaf closures Lz for |z| < 1 are three-dimensional,
and the closures corresponding to the poles (z = ±1) are two-dimensional. This is
a codimension-3 Riemannian foliation for which all of the infinitessimal holonomy
groups are trivial; moreover, the leaves are all simply connected. There are leaf
closures of codimension 2 and codimension 1. The codimension 2 leaf closures corre-
spond to isotropy type (e) on the basic manifold, and the codimension 1 leaf closures
correspond to an isotropy type (SO(2)) on the basic manifold. In some sense, the
isotropy type measures the holonomy of the leaf closure in this case.
The basic forms in the various dimensions are:

Ω0
B = {f (z)}

Ω1
B =

{
g1 (z) dz +

(
1− z2

)
g2(z)dθ + g3 (z) ds

}
Ω2
B =

{
h1 (z) dz ∧ dθ +

(
1− z2

)
h2(z)dθ ∧ ds+ h3 (z) dz ∧ ds

}
Ω3
B = {k (z) dz ∧ dθ ∧ ds} ,



SUSPENSION FOLIATIONS 11

where all of the functions above are smooth in a neighborhood of [0, 1]. An elementary
calculation shows that h0 = h1 = h2 = h3 = 1, so that χ (M,F) = 0. It is pretty
easy to generalize the calculations from the last example to get that the supertrace
of the basic heat operator on forms is:

χ (M,F) = tr
(
e−t∆

0
B

)
− tr

(
e−t∆

1
B

)
+ tr

(
e−t∆

2
B

)
− tr

(
e−t∆

3
B

)
=

∑
n≥0

e−n(n+1)t + 3
∑
n≥0

e−n(n+1)t − 2−

(
3
∑
n≥0

e−n(n+1)t − 2

)
+
∑
n≥0

e−n(n+1)t

= 0,

as expected. Note that taut foliations of odd codimension will always have a zero
Euler characteristic, by Poincare duality. Open Question: will these foliations always
have a zero basic index?

Example E: Consider the flat torus T 2 = R2�Z2. Consider the map F : T 2 → T 2

defined by

F

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
mod 1

Let M = [0, 1] × T 2� ∼, where (1, a) ∼ (0, F (a)). Let F1 be the foliation whose
leaves are of the form La = {(t, p)∼ ∈M : t ∈ [0, 1] , p ∈ Oa}.
It can be shown that the basic cohomology H1

b is infinite-dimensional, because there
is an infinite-dimensional space of closed basic one-forms, and the only basic functions
are constants. The transversal volume form is exact, so h2

b = 0, h0
b = 1, h1

b = ∞.
Therefore, there is no Riemannian foliation structure on this foliation, because if
there were h1

b would have to be finite.
Example F: In ([2, p. 80ff]). Consider the flat torus T 2 = R2�Z2. Consider the map
F : T 2 → T 2 defined by

F

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
mod 1

Let M = [0, 1]×T 2� ∼, where (0, a) ∼ (1, F (a)). Let v, v′ be orthonormal eigenvec-

tors of the matrix above, corresponding to the eigenvalues 3+
√

5
2

, 3−
√

5
2

, respectively.
Let the linear foliation F be defined by the vector v′ on each copy of T 2. Notice that
every leaf is simply connected and that the leaf closures are of the form {t}×T 2, and
this foliation is Riemannian if we choose a suitable metric. For example, we choose
the metric along [0, 1] to be standard and require each torus to be orthogonal to this
direction. Then we define the vectors v and v′ to be orthogonal in this metric and

let the lengths of v and v′ vary smoothly over [0, 1] so that ‖v‖(0) = 3+
√

5
2
‖v‖(1) and

‖v′‖(0) = 3−
√

5
2
‖v′‖(1). Let v = a (t) v, v′ = b (t) v′ be the resulting renormalized

vector fields. This foliation is a codimension two Riemannian foliation that is not
taut.
The basic manifold is a torus, and the isotropy groups are all trivial. We use coordi-
nates (t, x, y) ∈ [0, 1]× T 2 to describe points of M . The basic forms are:

Ω0
B = {f (t)}

Ω1
B = {g1 (t) dt+ g2(t)v∗}

Ω2
B = {h(t)dt ∧ v∗} ,
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where all the functions are smooth. Note that dv∗ = − a′(t)
a(t)

dt∧ v∗ By computing the

cohomology groups, we get h0 = h1 = 1, h2 = 0. Thus, the basic Euler characteristic
is zero. The calculation using the heat kernel is also interesting. The differentials
and codifferentials are as follows:

d (f (t)) = f ′ (t) dt

d (g1 (t) dt+ g2(t)v∗) = a
(g2

a

)′
(t) dt ∧ v∗

δB (g1 (t) dt+ g2(t)v∗) = −g′1 (t)

δB (h (t) dt ∧ v∗) = −a
(
h

a

)′
v∗.

From this we obtain:

∆B (f (t)) = −f ′′ (t)

∆B (g1 (t) dt+ g2(t)v∗) = −g′′1 (t) dt− a
(g2

a

)′′
(t) v∗

∆B (h (t) dt ∧ v∗) = −a
(
h

a

)′′
(t) dt ∧ v∗.

All the functions above are functions on [0, 1] with periodic boundary conditions. We
get the following expansions for the trace of the basic heat operator on forms:

tr
(
e−t∆

0
B

)
= 1 + 2

∑
n≥1

e−4π2n2t ∼ 1√
4πt

tr
(
e−t∆

1
B

)
= trS1

(
e−tL

)
+ 1 + 2

∑
n≥1

e−4π2n2t ∼ 1√
4πt

(
1 + A1t+ A2t

2 + . . .
)

+
1√
4πt

tr
(
e−t∆

2
B

)
= trS1

(
e−tL

)
∼ 1√

4πt

(
1 + A1t+ A2t

2 + . . .
)
,

where L is the elliptic operator on functions on the circle of length one defined by
Lh = −a

(
h
a

)′′
. Clearly, the supertrace is identically zero, as predicted. Note that in

this case the asymptotics of the basic heat operators have no t0 terms.
Example G: This foliation is the suspension of an irrational rotation of the flat torus

and a Z2-action. Let X be any closed Riemannian manifold such that π1(X) = Z ∗Z
— the free group on two generators {α, β}. We normalize the volume of X to be

1. Let X̃ be the universal cover. We define M = X̃ × S1 × S1�π1(X), where

π1(X) acts by deck transformations on X̃ and by α (θ, φ) = (2π − θ, 2π − φ) and
β (θ, φ) =

(
θ, φ+

√
2π
)

on S1 × S1. We use the standard product-type metric. The

leaves of F are defined to be sets of the form
{

(x, θ, φ)∼ |x ∈ X̃
}

. Note that the

foliation is transversally oriented. The leaf closures are sets of the form

Lθ =
{

(x, θ, φ)∼ |x ∈ X̃, φ ∈ [0, 2π]
}⋃{

(x, 2π − θ, φ)∼ |x ∈ X̃, φ ∈ [0, 2π]
}

This example is a codimension two transversally oriented Riemannian foliation in
which all the leaf closures have codimension one. The leaf closure foliation is not
transversally orientable, and the basic manifold is a flat Klein bottle with an SO(2)-
action. The two leaf closures with Z2 holonomy correspond to the two orbits of type
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(Z2), and the other orbits have trivial isotropy.
The basic forms are:

Ω0
B = {f (θ)}

Ω1
B = {g1 (θ) dθ + g2(θ)dφ}

Ω2
B = {h(θ)dθ ∧ dφ} ,

where the functions are smooth and satisfy

f (2π − θ) = f (θ)

gi (2π − θ) = −gi (θ)
h (2π − θ) = h (θ) .

A simple argument shows that h0 = h2 = 1 and h1 = 0. Thus, χ (M,F) = 2. The

basic manifold Ŵ is an SO(2)-manifold, defined by Ŵ = [0, π]× S1� ∼, where the
circle has length 1 and (θ = 0 or π, γ) ∼ (θ = 0 or π,−γ). This is a Klein bottle,

since it is the connected sum of two projective planes. SO(2) acts on Ŵ via the
usual action on S1. It is a simple exercise to calculate the trace of the basic heat
operators:

tr
(
e−t∆

0
B

)
=

∑
n≥0

e−n
2t ∼

√
π

2
t−1/2 +

1

2

tr
(
e−t∆

1
B

)
= 2

∑
n≥1

e−n
2t ∼
√
πt−1/2 − 1

tr
(
e−t∆

2
B

)
=

∑
n≥0

e−n
2t ∼

√
π

2
t−1/2 +

1

2
.

The basic Euler class is again the supertrace.
Another interesting feature of this example is the following. One may calculate
the heat kernel explicitly, and its asymptotics have some interesting features. Let’s
restrict to the case of functions for simplicity. The normalized eigenfunctions are

{
1

2π

}
∪
{

1√
2π

cosnθ

}
n>0
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corresponding to the eigenvalues {n2}n≥0. Thus

KB (t, θ, θ) =
1

4π2
+

1

2π2

∑
n>0

e−n
2t cos2 nθ

=
1

4π2
+

1

4π2

∑
n>0

e−n
2t (1 + cos 2nθ)

=
1

4π2
+

1

4π2

∑
n>0

e−n
2t +

1

8π2

(
1 + 2

∑
n>0

e−n
2t cos 2nθ

)
− 1

8π2

=
1

8π2
+

1

4π2

∑
n>0

e−n
2t +

1

8π2

∑
n∈Z

(√
π√
t
e−(nπ+θ)2/t

)

∼ 1

8π2
+

1

4π2

(√
π

2
√
t
− 1

2

)
+

1

8π2

{ √
π√
t

if θ = π or 0

0 otherwise

∼
{ 1

4π3/2
√
t

if θ = π or 0
1

8π3/2
√
t

otherwise
.

On the other hand, the trace of the heat kernel on functions is

KB (t) =

∫
M

KB (t, θ, θ)

=
∑
n≥0

e−n
2t

∼
√
π

2
√
t

+
1

2
,

as we noted before. Note that the asymptotics of KB (t, θ, θ) are integrable but do
not integrate to the asymptotics of KB (t), because the 1

2
would be missing. ( !!! )

Example H: This Riemannian foliation is a suspension of a pair of rotations of the
sphere S2. Let X be any closed Riemannian manifold such that π1(X) = Z ∗ Z —
the free group on two generators {α, β}. We normalize the volume of X to be 1.

Let X̃ be the universal cover. We define M = X̃ × S2�π1(X). The group π1(X)

acts by deck transformations on X̃ and by rotations on S2 in the following ways.
Thinking of S2 as imbedded in R3, let α act by an irrational rotation around the z-
axis, and let β act by an irrational rotation around the x-axis. We use the standard
product-type metric. As usual, the leaves of F are defined to be sets of the form{

(x, v)∼ |x ∈ X̃
}

. Note that the foliation is transversally oriented, and a generic leaf

is simply connected and thus has trivial holonomy. Also, the every leaf is dense. The
leaves {(x, (1, 0, 0))∼} and {(x, (0, 0, 1))∼} have nontrivial holonomy; the closures of

their infinitessimal holonomy groups are copies of SO(2). Thus, a leaf closure in M̂

covering the leaf closure M has structure group SO(2) and is thus all of M̂ , so that

Ŵ is a point. This example is a codimension two Riemannian foliation with dense
leaves, such that some leaves have holonomy but most do not. The basic manifold is
a point, the fixed point set of the SO (2) action. The isotropy group SO(2) measures
the holonomy of some of the leaves contained in the leaf closure.
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The only basic forms are constants and 2-forms of the form CdV , where C is a
constant and dV is the volume form on S2. Thus h0 = h2 = 1 and h1 = 0, so that
χ (M,F) = 2. The heat kernel approach is pretty silly, since the only eigenvalue is
zero:

tr
(
e−t∆

0
B

)
= 1

tr
(
e−t∆

1
B

)
= 0

tr
(
e−t∆

2
B

)
= 1.
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