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Mathematics and Music

What?

Archytas,
Pythagoras
Other Pythagorean 
Philosophers/Educators:

The Quadrivium
Mathematics

(“study of the 
unchangeable”)

Number Magnitude

Arithmetic
numbers at 

rest

Music
numbers in 

motion

Geometry
magnitudes 

at rest

Astronomy
magnitudes 

in motion
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Physics of Sound and Musical Tone
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Pitch: frequency of wave = number of cycles per second (Hz)
higher pitch � more cycles per second � skinnier waves on graph

Volume: amplitude of wave = difference between maximum pressure 
and average pressure
higher volume � taller waves on graph

Timbre: quality of tone = shape of wave
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Musical Scale: 
(increasing pitch = frequency)
C→D→E→F→G→A→B→C→…

C# D# F# G# A#

or D
bbbb E

bbbb G
bbbb A

bbbb B
bbbb

Notes between:

12-note Musical Scale (Chromatic Scale):
C→ C#→ D→ E

bbbb

→ E→ F→ F#→ G→ G#→A→B
bbbb

→B→C→…

Musical Intervals:
Interval Name Examples

2nd 2 half steps C→D, E→ F#

3rd 4 half steps G→B, B→ D#

5th 7 half steps G→D, B→ F#

Octave 12 half steps C1→C2, F#
2→ F#

3

Harmonics ( Partials )

Multiply Frequency 
by

Interval
Produced

Example
C1=fundamental

2 1 octave C2

3 1 octave + perfect 5th
(2% sharp)

G2

4 2 octaves C3

5 2 octaves + major 3rd
(14% flat)

E3

6 2 octaves + perfect 5th
(2% sharp)

G3

7 2 octaves + dominant 7th   
(32% flat)

B
bbbb

3

8 3 octaves C4

9 3 octaves + whole step
(4% sharp)

D4

10 3 octaves + major 3rd
(14% flat)

E4
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When a musical instrument is played, the harmonics appear 
at different amplitudes --- this creates the differe nt timbres.

A branch of mathematics – Fourier analysis – deals with 
decomposing a wave of a certain frequency into its 
harmonic components.
Joseph Fourier (1768 – 1830) discovered these method s 
and utilized them to solve heat flow problems.

All of this mathematics uses Calculus in an essenti al way 
(discovered by Newton and Leibniz independently in late 
1600s). 

Creating new musical tones using harmonics 
from just one musical tone:

Given tone: C3 (tuned to frequency 262 Hz)
How can we make E3?

Let me count the ways:

Method 1: “Just” tuning
• Multiply frequency by 5 C3→E5 (1310 Hz)
• Multiply frequency by     E5→E3 (327.5 Hz)
• Corresponds to factor of    for Major 3rd interval

Method 2: “Pythagorean” tuning
• Multiply frequency by 3 C3→G4 (786 Hz)
• Multiply frequency by    G4→G3 (393 Hz)
• Multiply frequency by 3 G3→D5 (1179 Hz)
• Multiply frequency by    D5→D3 (294.75 Hz) 
• Multiply frequency by 3 D3→A4 (884.25 Hz)
• Multiply frequency by    A4→A3 (442.125 Hz)
• Multiply frequency by 3 A3→E5 (1326.375 Hz) 
• Multiply frequency by    E5→E3 (331.6 Hz)

• Corresponds to factor of     for Major 3rd interval
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Yet another example: the “Pythagorean comma”

The cycle of “perfect” fifths:
Starting tone: C1 (tuned to frequency 65 Hz)

• Multiply frequency by 3 C1→ G (195 Hz)
• Multiply frequency by     G2→G1 (97.5 Hz)

• Corresponds to factor of                for Perfect 5th

interval

Keep doing that:
G1→D2 (146.25 Hz)→ A2 (219.38 Hz)
→E3 (329.06 Hz)→ B3 (493.59 Hz) 
→F#

4 (740.39 Hz)→C#
5 (1110.6 Hz)

→G#
5 (1665.9 Hz)→E

b

6 (2498.8 Hz) 
→ B

b

6 (3748.2 Hz) →F7 (5622.3 Hz) 
→C8 (8433.5 Hz) → (go down 7 octaves)
→C1 (65.8868 Hz)
Wait a minute!!!!

The frequency (pitch) is high by a factor of 

(the Pythagorean comma).

5.1
2

3 =

2

1

....013643.1
2

3
19

12

≈

Evenly-spaced intervals between octaves:
Equal tempering

Pythagorean tuning (popular through 16th century):

C to G is a perfect fifth – factor of 

F# to C# is a perfect fifth – factor of

Thus music with C’s and G’s sounds good.
Music with F#’s and C#’s sounds a little weird. 

Equal-tempered tuning (introduced by Simon Stevin (mathematician) 
in 1596; in 1630s Father Mersenne formulated rules for tuning by 
beats; became popular in 18th century):
All intervals are the same in all keys.
All keys sound roughly the same.

A half-step interval is a factor of 

Thus, there are 12 even half-steps between octaves.

12/112 22 =

5.1
2
3 =

48.1
5.1

3

2
11

18

≈=
comma
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Interval Example Frequency 
Multiple 

(Pythagorean)

Frequency 
Multiple

(Even-tempered)

half step C - C#

whole step C - D

minor third C - E

major third C - E

perfect fourth C - F

perfect fifth C - G 

octave C 1 - C2 2

053.1
243

256

3

2
5

8

≈=

125.1
8

9

2

3
3

2

==

185.1
27

32

3

2
3

5

≈=

266.1
64

81

2

3
6

4

≈=

333.1
3

4 ≈

5.1
2

3 =

122.12 12/2 ≈

059.12 12/1 ≈

189.12 12/3 ≈

260.12 12/4 ≈

335.12 12/5 ≈

498.12 12/7 ≈

22 12/12 =

A captivating look at how musical temperament 
evolved, and how we could (and perhaps should) be 
tuning differently today.

Ross W. Duffin presents an engaging and elegantly reasoned 
exposé of musical temperament and its impact on the way in 
which we experience music. A historical narrative, a music theory 
lesson, and, above all, an impassioned letter to musicians and 
listeners everywhere, How Equal Temperament Ruined Harmony
possesses the power to redefine the very nature of our 
interactions with music today. 

For nearly a century, equal temperament—the practice of dividing 
an octave into twelve equally proportioned half-steps—has held a 
virtual monopoly on the way in which instruments are tuned and 
played. In his new book, Duffin explains how we came to rely 
exclusively on equal temperament by charting the fascinating 
evolution of tuning through the ages. Along the way, he 
challenges the widely held belief that equal temperament is a 
perfect, “naturally selected” musical system, and proposes a 
radical reevaluation of how we play and hear music. Ross W. 
Duffin , author of Shakespeare’s Songbook (winner of the Claude 
V. Palisca Award), is Fynette H. Kulas Professor of Music at Case 
Western Reserve University. He lives in Shaker Heights, Ohio.

From W. W. Norton 
Catalog:



7

Pairs of Harmonious Tones : tones sound harmonious when they are 
played together if they share common harmonics with  nearly the 
same frequencies.

Octave

Interval

Lower Pitch 
Harmonic 

Frequencies

Higher Pitch 
Harmonic 

Frequencies

… …

f

f2

f3

f6

f4
f5

f2

f6

f4

f8

f10

f12

Pairs of Harmonious Tones

Pythagorean 
Perfect 4th

Lower Pitch 
Harmonic 

Frequencies

Higher Pitch 
Harmonic 

Frequencies

… …

f

f2

f3

f6

f4

f5

f
3

4

f4

f
3
8

f
3

16

f
3

20

f8
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Pairs of Harmonious Tones

Just 
Major 3rd

Lower Pitch 
Harmonic 

Frequencies

Higher Pitch 
Harmonic 

Frequencies

… …

f

f2

f3

f6

f4

f5

f
4

5

f
4

15

f
4

10

f5

f
4

25

f
4

30

The intervals in harmonious order (mathematically d etermined)

Interval Rational approx. denominator

octave 2/1 1

Perfect 5th 3/2 2

Perfect 4th 4/3 3

Major 6th 5/3 3

Major 3rd 5/4 4

Minor 3rd 6/5 5

Tritone 7/5 5

Augmented 5th 8/5 5

Minor 7th 9/5 5

Major 2nd 9/8 8

Major 7th 15/8 8

Minor 2nd 16/15 15

Note: Hindemith 1930s: The Craft of Musical Composition
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The 3-note chords in harmonious order 
(consonant to dissonant)

Chord ratios LCD, sum of degrees

C-F-A 4/3,5/3,5/4 LCD=3, sum=10

C-E-G 5/4,3/2,6/5 LCD=4, sum=11
C-Eb-Ab 6/5,8/5,4/3 LCD=5, sum=13

C-F-G 4/3,3/2,9/8 LCD=6, sum=13
C-Eb-G 6/5,3/2,5/4 LCD=10, sum=11

…. …. ….

…. …. ….

C-C#-B 17/16,15/8,15/34 LCD=16, sum=58

C-C#-D 16/15,9/8,135/128 LCD=120, sum=151

Would Space Aliens want to listen to Mozart?

To construct an even-tempered scale that includes the first 
nontrivial harmonic, we need to find a fraction     such that

The resulting chromatic scale would have distinct notes. We 
would have

Possible a/b Decimal Error in 5th

3/5 .6 1.05%

4/7 .5714 0.93%

7/12 .5833 0.11%

17/29 .5862 0.086%

65/111 .5856 0.043%

ba /22
3 ≈

b
a

b

( ) ...215849625007.2
3log 2 =≈

b

a


