
THE SPECTRUM OF BASIC DIRAC OPERATORS

KEN RICHARDSON

Abstract. In this note, we discuss Riemannian foliations, which are smooth foliations that
have a transverse geometric structure. We explain a known generalization of Dirac-type
operators to transverse operators called “basic Dirac operators” on Riemannian foliations,
which require the additional structure of what is called a bundle-like metric. We explain
the result in [10] that the spectrum of such an operator is independent of the choice of
bundle-like metric, provided that the transverse geometric structure is fixed. We discuss
consequences, which include defining a new version of the exterior derivative and de Rham
cohomology that are nicely adapted to this transverse geometric setting.

1. Introduction

The content here concerns some work in [10] and also briefly mentions work in [21], [16],
and [3]; it also provides applications not given in the these references.

1.1. Smooth foliations and basic forms. Let (M,F) be a smooth, closed manifold of
dimension n endowed with a foliation F given by an integrable subbundle L ⊂ TM of rank p.
The set F is a partition of M into immersed submanifolds (leaves) such that the transition
functions for the local product neighborhoods (foliation charts) are smooth. The subbundle
L = TF is the tangent bundle to the foliation; at each p ∈ M , TpF = Lp is the tangent
space to the leaf through p.

Many researchers have studied basic forms and basic cohomology, especially in the partic-
ular cases of Riemannian foliations with bundle-like metrics, to be discussed later (see [1],
[14], [28]). Basic forms are differential forms on M that locally depend only on the trans-
verse variables in the foliation charts — that is, forms α satisfying Xyα = Xydα = 0 for all
X ∈ Γ(L); the symbol “y” stands for interior product. Let Ω (M,F) ⊂ Ω (M) denote the
space of basic forms. These differential forms are preserved by the exterior derivative and
are used to define basic cohomology groups, which can be infinite-dimensional but are al-
ways finite-dimensional in the case of Riemannian foliations. We define the basic cohomology
group Hk (M,F) by

Hk (M,F) =
ker dk

Imdk−1

with
dk = d : Ωk (M,F)→ Ωk+1 (M,F) .

We comment that the point of using basic forms is an effort to find a form of de Rham
cohomology on a singular, possibly non-Hausdorff space, that space being the set of leaves
of the foliation. To gain the smooth structure, we loose a bit of information about the leaf
space. The basic cohomology can be infinite-dimensional, and it can be relatively trivial.
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We may also define basic cohomology with values in a foliated vector bundle; by doing this
we gain more topological information about the leaf space.

Basic cohomology does not necessarily satisfy Poincaré duality, even if the foliation is
transversally oriented. If there are additional restrictions, it may satisfy duality, for example
if the manifold admits a metric for which the leaves are locally equidistant and are minimal
submanifolds (ie a taut Riemannian foliation). We emphasize that basic cohomology is a
smooth foliation invariant and does not depend on the choice of metric or any transverse or
leafwise structure.

1.2. Riemannian foliations and bundle-like metrics. We assume throughout the paper
that the foliation is Riemannian; this means that there is a metric on the local space of
leaves — a holonomy-invariant transverse metric gQ on the normal bundle Q = TM�L; this
means that the transverse Lie derivative LXgQ is zero for all leafwise vector fields X ∈ Γ(L).
This metric is a substitute for a metric on the singular space of leaves. This condition is
characterized by the existence of a unique metric and torsion-free connection ∇ on Q [20],
[24], [28]. We can then associate to ∇ the transversal curvature data, in particular the
transversal Ricci curvature Ric∇ and transversal scalar curvature Scal∇.

We often assume that the manifold is endowed with the additional structure of a bundle-
like metric [24], i.e. the metric g on M induces the metric on Q ' L⊥. Every Riemannian
foliation admits bundle-like metrics that are compatible with a given (M,F , gQ) structure.
There are many choices, since one may freely choose the metric along the leaves and also
the transverse subbundle NF . We note that a bundle-like metric on a smooth foliation is
exactly a metric on the manifold such that the leaves of the foliation are locally equidistant.

There are topological restrictions to the existence of bundle-like metrics (and thus Rie-
mannian foliations). Important examples of requirements for the existence of a Riemannian
foliations include

• certain characteristic classes must vanish (see [15])
• leaf closures must partition the manifold (see [20])
• the basic cohomology must be finite-dimensional (see [14], [28], [21])
• for any metric on the manifold, the orthogonal projection

P : L2 (Ω (M))→ L2 (Ω (M,F))

must map the subspace of smooth forms onto the subspace of smooth basic forms
([21]).

Riemannian foliations were introduced by B. Reinhart in 1959 ([24]). Good references for
Riemannian foliations and bundle-like metrics include the books and papers of B. Reinhart,
F. W. Kamber, Ph. Tondeur, P. Molino, for example.

1.3. The basic Laplacian. Many researchers have studied basic forms and the basic Lapla-
cian on Riemannian foliations with bundle-like metrics (see [1], [14], [28]). The basic Lapla-
cian ∆b for a given bundle-like metric is a version of the Laplace operator that preserves the
basic forms and that is essentially self-adjoint on the L2-closure of the space of basic forms.
We define the basic Laplacian ∆b by

∆b = dδb + δbd : Ω (M,F)→ Ω (M,F) ,

where δb is the L2-adjoint of the restriction of d to basic forms: δb = Pδ is the ordinary
adjoint of d followed by the orthogonal projection onto the space of basic forms.
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The operator ∆b and its spectrum depend on the choice of the bundle-like metric and
provide invariants of that metric. See [12], [16], [17], [21], [25], [26] for results. One may
think of this operator as the Laplacian on the space of leaves. This operator is the appropriate
one for physical intuition. For example, the Laplacian is used in the heat equation, which
determines the evolution of the temperature distribution over a manifold as a function of
time. If we assume that the leaves of the foliation are perfect conductors of heat, then the
basic Laplacian is the appropriate operator that allows one to solve the heat distribution
problem in this situation.

It turns out that the basic Laplacian is the restriction to basic forms of a second order
elliptic operator on all forms, and this operator is not necessarily symmetric ([21]). Only in
special cases is this operator the same as the ordinary Laplacian.

The basic Laplacian ∆b is also not the same as the formal Laplacian defined on the local
quotient manifolds of the foliation charts (or on a transversal). This transversal Laplacian
is in general not symmetric on the space of basic forms, but it does preserve Ω (M,F).

The basic heat flow asymptotics are more complicated than that of the standard heat
kernel, but there is a fair amount known (see [21], [25], [26]).

1.4. The basic adjoint of the exterior derivative and mean curvature. We assume
(M,F , gM) is a Riemannian foliation with bundle-like metric compatible with the Riemann-
ian structure (M,F , gQ). For later use, we define the mean curvature one-form κ and discuss
the operator κby. Let

H =

p∑
i=1

π
(
∇M
fi
fi
)
,

where π : TM → NF is the bundle projection and (fi)1≤i≤p is a local orthonormal frame

of TF . This is the mean curvature vector field, and its dual one-form is κ = H[. Let
κb = Pκ be the (smooth) basic projection of this mean curvature one-form. Let κby denote
the (pointwise) adjoint of the operator κb∧. Clearly, κby depends on the choice of bundle-like
metric gM , not simply on the transverse metric gQ.

It turns out that κb is a closed form whose cohomology class in H1 (M,F) is independent
of the choice of bundle-like metric (see [1]).

Recall the following expression for δb, the L2-adjoint of d restricted to the space of basic
forms of a particular degree (see [28], [21]):

δb = Pδ

= ±∗d∗+ κby

= δT + κby,

where

• δT is the formal adjoint (with respect to gQ) of the exterior derivative on the transverse
local quotients.
• the pointwise transversal Hodge star operator ∗ is defined on all k-forms γ by

∗γ = (−1)p(q−k) ∗ (γ ∧ χF) ,

with χF being the leafwise volume form, the characteristic form of the foliation and

∗ being the ordinary Hodge star operator. Note that ∗2 = (−1)k(q−k) on k-forms.
• The sign ± above only depends on dimensions and the degree of the basic form.
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1.5. Twisted duality for basic cohomology. Even for transversally oriented Riemannian
foliations, Poincaré duality does not necessarily hold for basic cohomology.

However, note that d−κb∧ is also a differential which defines a cohomology of basic forms.
That is, since d (κb) = 0, it follows from the Leibniz rule that (d− κb∧)2 = 0 as an operator
on forms, and it maps basic forms to basic forms. This differential also has the property
that

δb∗α = (−1)k+1 ∗ (d− κb∧)α

on every basic k-form α. As a result, the transversal Hodge star operator implements an
isomorphism between different kinds of basic cohomology groups (see [13], [28], and [21]):

H∗d (M,F) ∼= Hq−∗
d−κb∧ (M,F) .

This is called twisted Poincaré duality.

1.6. Ordinary Dirac operators and examples. See a reference such as [27] for the well-
known details for this section. The ordinary Dirac operator in Euclidean space is given
by

D =
∑

ek ·
∂

∂xk
,

where the operators ek· are multiplication by matrices satisfying the relation

ek · ej · + ej · ek· = −2δkj1.

In three dimensions, the matrices can be chosen to be the Pauli spin matrices

e1· =

(
0 −1
1 0

)
, e2· =

(
0 i
i 0

)
, e3· =

(
i 0
0 −i

)
.

These relations are the same as the relations of the complex Clifford algebra Cl(V ) associ-
ated to a vector space V . In general what is needed to define an ordinary Dirac operator on
a Riemannian manifold M is a vector bundle E → M that is a bundle of Cl(TM) Clifford
modules with compatible connection ∇E. The Dirac operator D is the composition of the
maps

Γ (E)
∇E

−→ Γ (T ∗M ⊗ E)
∼=−→ Γ (TM ⊗ E)

Cliff−→ Γ (E) ,

where the last map is Clifford multiplication, denoted by “·”. We may write

D =
∑

ei · ∇E
ei

acting on Γ (E), where (ei) is a local orthonormal frame of TM . Computations show that
D is elliptic, essentially self-adjoint, and thus has discrete spectrum.

Examples of the Dirac operator include:

• “The” spinc Dirac operator. Here E is a spinor bundle, which at each point p ∈ M
is an irreducible representation space for Cl(TpM).
• The de Rham operator

d+ δ : Ωeven (M)→ Ωodd (M) .

• The signature operator

d+ δ : Ω+ (M)→ Ω− (M) ,

where the ± refer to self-dual and anti-self-dual forms. There is an operator of the
form F = ik(k−1)+n∗ acting on complex-valued k-forms on a 2n-dimensional manifold,
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and F2 = 1. The space Ω+ of self-dual forms is the +1 eigenspace of F, and the
space Ω− of antiself-dual forms is the −1-eigenspace of F. It turns out that d + δ
anticommutes with F and thus maps Ω± to Ω∓.
• The Dolbeault operator

∂ + ∂ : Ω0,even (M)→ Ω0,odd (M) .

Each one of these operators has an associated Laplacian D2 and associated harmonic
forms, and the index of each of these operators ( index(D) = dim kerD − dim kerD∗ ) is
an important topological invariant. For example, if D = d+ δ is the de Rham operator, we
have

ker (d+ δ) = H,

the space of harmonic forms, which by Hodge theory can be used to represent the different
cohomology classes. Thus,

index (d+ δ)|Ωeven = dim ker (d+ δ)|Ωeven − dim ker (d+ δ)|Ωodd

= χ (M) ,

the Euler characteristic of M .

1.7. The basic Dirac operator and statement of the main theorem. We now discuss
the construction of the basic Dirac operator (see [6], [8], [22], [3]), a construction which
requires a choice of bundle-like metric. Let (M,F) be a Riemannian manifold endowed with
a Riemannian foliation. Let E → M be a foliated vector bundle (see [15]) that is a bundle
of Cl(Q) Clifford modules with compatible connection ∇E. The transversal Dirac operator
Dtr is the composition of the maps

Γ (E)
(∇E)

tr

−→ Γ (Q∗ ⊗ E)
∼=−→ Γ (Q⊗ E)

Cliff−→ Γ (E) ,

where the last map denotes Clifford multiplication, denoted by “·”, and the operator
(
∇E
)tr

is

the projection of ∇E. The transversal Dirac operator fixes the basic sections Γb(E) ⊂ Γ(E)
(i.e. Γb(E) = {s ∈ Γ(E) : ∇E

Xs = 0 for all X ∈ Γ(L)}) but is not symmetric on this
subspace. By modifying Dtr by a bundle map, we obtain a symmetric and essentially self-
adjoint operator Db on Γb(E). Let κb be the L2-orthogonal projection of κ onto the space of

basic forms as explained above, and let κ]b be the corresponding vector field. We now define

Dtr s =

q∑
i=1

ei · ∇E
ei
s ,

Dbs =
1

2
(Dtr +D∗tr)s =

q∑
i=1

ei · ∇E
ei
s− 1

2
κ]b · s ,

where {ei}i=1,··· ,q is a local orthonormal frame of Q. A direct computation shows that Db

preserves the basic sections, is transversally elliptic, and thus has discrete spectrum ([8], [6],
[10]).

An example of the basic Dirac operator is as follows. Using the bundle ∧∗Q as the Clifford
bundle with Clifford action e· = e∗ ∧ −e∗y in analogy to the ordinary de Rham operator,
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we have

Dtr = d+ δT = d+ δb − κby : Ωeven (M,F)→ Ωodd (M,F)

Db =
1

2
(Dtr +D∗tr)s = d+ δb − κby−

1

2
κ]b ·

= d+ δb − κby−
1

2
(κb ∧ −κby)

= d+ δb −
1

2
κby−

1

2
κb ∧ .

One might have instead guessed that d+ δb is the basic de Rham operator in analogy to the
ordinary de Rham operator, for this operator is essentially self-adjoint, and the associated
basic Laplacian yields basic Hodge theory that can be used to compute the basic cohomology.

We study the invariance of the spectrum of the basic Dirac operator with respect to a
change of bundle-like metric; that means when one modifies the metric on M in any way
that leaves the transverse metric on the normal bundle intact (this includes modifying the
subbundle NF ⊂ TM , as one must do in order to make the mean curvature basic, for
example). In [10], we prove

Theorem 1.1. Let (M,F) be a compact Riemannian manifold endowed with a Riemannian
foliation and basic Clifford bundle E → M . The spectrum of the basic Dirac operator is
the same for every possible choice of bundle-like metric that is associated to the transverse
metric on the quotient bundle Q.

We emphasize that the basic Dirac operator Db depends on the choice of bundle-like
metric, not merely on the Clifford structure and Riemannian foliation structure, since both
projections T ∗M → Q∗ and Pb as well as κb depend on the leafwise metric.

2. Proof of the main theorem

The proof of the main theorem is contained in [10]. The idea of proof is as follows. One
can show that every different choice of bundle-like metric changes the L2-inner product by
multiplication by a specific smooth, positive basic function. This changes the basic Dirac
operator by a zeroth order operator that is Clifford multiplication by an exact basic one-form.
This new operator is conjugate to the original one, and thus the spectrum of the operator is
independent of the metric choice.

3. Consequences of the main theorem

D. Dominguez showed that every Riemannian foliation admits a bundle-like metric for
which the mean curvature form is basic [5]. Further, the bundle-like metric may be chosen
so that the mean curvature is basic-harmonic (in the new metric); see [18] and [19]. Therefore,
in calculating or estimating the eigenvalues of the basic Dirac operator, one may choose the
bundle-like metric so that the mean curvature is basic-harmonic. Immediately we may obtain
stronger inequalities for eigenvalue estimates. We give one example below.

In [11], S. D. Jung showed that the eigenvalues λ of the basic Dirac operator on spin
foliations (where the normal bundle carries a spin structure as a foliated vector bundle)
satisfy

λ2 ≥ q

4(q − 1)
infM(Scal∇ + |κ|2),
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under the assumption that the mean curvature form κ is basic and basic-harmonic. In [9], the
author obtained another Friedrich-type estimate [4] for the eigenvalues of the basic Dirac
operator for bundle-like metrics with basic-harmonic mean curvature. Since by Theorem
1.1 the spectrum does not change, we may improve both results to deduce that for any
bundle-like metric the eigenvalues of the basic Dirac operator satisfy

λ2 ≥ q

4(q − 1)
infM(Scal∇). (3.1)

This estimate is of interest only for positive transversal scalar curvature. Moreover, in [10]
we show

Proposition 3.1. Let (M,F) be a compact Riemannian manifold endowed with a spin fo-
liation with basic mean curvature κ. Then, we have the estimate

λ2 ≥ q

4(q − 1)
infM(ScalM − ScalL + |A|2Q + |T |2L).

If F is a Riemannian flow (i.e. p = 1), then

λ2 ≥ q

4(q − 1)
infM(ScalM + |A|2Q + |κ|2). (3.2)

If the limiting case is attained, the foliation is minimal and we have a transversal Killing
spinor.

Here A and T denote the O’Neill tensors [2, 23] of the foliation.
More applications can be found in the paper [10].

4. Modified differentials, Laplacians, and basic cohomology

From the above, the basic de Rham operator is

Db = d+ δb −
1

2
κby−

1

2
κb ∧

= d̃+ δ̃

acting on basic forms, where

d̃ = d− 1

2
κb∧, δ̃ = δb −

1

2
κby.

The operators d̃ and δ̃ have interesting properties:

•They are differentials: d̃2 = 0, δ̃2 = 0.

•δ̃∗ = ±∗d̃.
From the first property we see that we can define cohomology using these differentials.

From the second property, we know that we may define a basic signature operator. This was
not known and not possible previously with ordinary basic cohomology and the operator
d+δb, because that operator would not map self-∗-dual basic forms to anti-self-∗-dual forms.
The eigenvalues of this operator depend only on the Riemannian foliation structure.

The new basic cohomology defined using d̃ will satisfy Poincaré duality, and the isomor-
phism is implemented using ∗. Also, even though the differential depends on the choice of
the bundle-like metric, the dimensions of the resulting cohomology groups are independent
of that choice. The consequences of these results will be explained in a forthcoming paper.
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