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G-manifolds

Let G be a compact Lie group that acts on the
right by isometries on a compact, n-dimensional
Riemannian manifold M. The pair (M,G)
along with the action is called a G-manifold.
The orbits G of this action are compact, ho-
mogeneous submanifolds. These submani-
folds are locally equidistant but do not nec-
essarily have constant dimension. The Lie
derivative of the metric is zero in directions
tangent to the orbits.



Riemannian foliations

Suppose a compact, Riemannian manifold M’
iIs endowed with a transversally oriented, co-
dimension-k foliation F — a partition of M’
into immersed, transversally oriented subman-
ifolds (leaves) of codimension k, such that the
leaves are locally equidistant. Such a metric is
called bundle-like for F, and (M’',F) is called
a Riemannian foliation. The Lie derivative
of the transverse metric is zero in directions
tangent to the leaves. The leaf closures are
compact submanifolds.

bundle-like NOT bundle-like




Theorem 1. Let G be a compact Lie group
that acts on the right by isometries on a com-
pact, n-dimensional Riemannian manifold M.
Then exists a Riemannian foliation (M',F)of
codimension n and an isometry ® : M/G —
M'/F such that the volume of the leaf closure
o (C) is the same as the volume of the orbit
CeM/G.

Proof. Choose a finite subset S C G so that
the subgroup I generated by S is dense in G.
Let X be any compact Riemannian manifold
with volume 1 such that there is a surjective
homomorphism p : 71 (X) — . Let M’ =
X x M/ ~, where (z,y) ~ (z[v], yu([y])) for
every x € X,y € M, and [y] € 71 (X). Let the
foliation F be defined by letting the leaves be
sets of the form Ly, = {[(x,yo)]N |x € )A(/} L]



Theorem 2. Let M’ be a compact, Rieman-
nian manifold, and let (M', F) be a transversally
oriented Riemannian foliation of codimension
n. Then there is a compact SO(n)-manifold
W and an isometry © : M'/F — W/G such
that Vol (@ (Z)) = Vol (f) for every leaf clo-
sure L € M'/F that has finite holonomy (or,
equivalently, maximal dimension).

Proof. Let # : M — M’ be the orthonormal
transverse frame bundle of M’, and use the
normalized biinvariant metric on the fibers and
the metric on M’ to define a canonical metric
on M. We lift the foliation F to a foliation F
on M, and the closures of the lifted foliation
form the fibers of a Riemannian submersion
p:M—W. Let ©(L)=p(r"1(L)). Next,
modify the metric along the SO (n)-orbits in W
so that the volume condition is satisfied. ||



Consequences

Corollary 1. Let G be any compact Lie group
that acts by orientation-preserving isometries
on a compact, oriented n-dimensional Rieman-
nian manifold M. Then there exists a Rieman-
nian SO(n)-manifold W such that W/SO (n)
is isometric to M /G via an isometry that pre-
serves the volumes of orbits of maximal dimen-
sion.

Corollary 2. Let (M,F) be a transversally ori-
ented, codimension-¢ Riemannian foliation on
a compact, Riemannian manifold. Then there
exists a Riemannian manifold M' along with a
transversally oriented Riemannian foliation F'
on M' that is constructed by suspending an
action of a subgroup of SO (q), such that the
leaf closure spaces M /F and M'/F' are isomet-
ric via an isometry that preserves volumes of
leaf closures of maximal dimension.



Laplacians

1. (Equivariant Laplacian of a G-manifold) Let
M be a compact Riemannian G-manifold.
The induced action of G on differential forms
commutes with the Laplacian on M, and
we define the equivariant Laplacian Ag to
be the restriction of the ordinary Laplacian
to equivariant forms — forms invariant un-
der the G-action. Let the eigenvalues of
A on G-invariant functions be denoted by

0<Af<A§S<A\§<..

Associated to Ag are the equivariant heat
operator e tAc and the equivariant heat
kernel Kq(t,z,y).



2. (Basic Laplacian of a Riemannian foliation)
Let M’ be a compact Riemannian manifold
endowed with a Riemannian foliation F.
The basic functions of (M’, F) are the func-
tions constant on the leaves of F, and the
basic forms are locally pullbacks of forms
on U/F, where U is a small open set in M’.
Let the basic Laplacian A g be defined by

Ap =opdp + dgpdp,

where dp is the restriction of d to basic
forms, and ép is the adjoint of dg on the
space of basic forms using the L2 inner
product. Let the eigenvalues of Apg on
functions be denoted by

o< AP <A <Af <. ..

Associated to A g are the basic heat opera-
tor e 2B and the basic heat kernel Kg(t, z,v).



Equivariant Spectral Geometry

Let M be a compact G-manifold, and let K(¢,z,y)
be the ordinary heat kernel on M. Then the
equivariant heat kernel satisfies

Ka(t,z,y) = /G K(t,z,yg) dg,

where dg is the normalized Haar measure. Thus,
the trace of the equivariant heat operator is

tr (e_tAG) Z e_MG
—/ / Ka(t,xz,xzg)dgdV (x).



e (Briining, Heintze, 1984) The trace of the
equivariant heat operator satisfies

tr (e_tAG) ~ (47rt)_m/2 (ao—l—

S ajpt?/?(log t)k> as t — 0,
J=>1
0<k< Ky

where m = dim M/G, Kg is less than or
equal to the number of different dimen-
sions of G-orbits in M, and ag = Vol(M/G).
The coefficients a;, depend only on the
metrics on M and G and their derivatives

on the subset {(g,z) |xg =z} C G x M.

e (Corollary) The equivariant spectral count-
ing function satisfies
Ne(\) 1= #{5 A5 < A}
Vol(M/@G)
2
(4m)™/2r (5 4+ 1)

)\m/2

as A — oo.



Basic Spectral Geometry

Theorem 3. Let M’ be a compact Rieman-
nian manifold endowed with a transversally ori-
ented, codimension-q Riemannian foliation F.
Then the basic heat kernel satisfies

KB(ta xla y,) — KSO(q) (ta X, y)a
where Kgo(,)(t,z,y) is the equivariant heat ker-
nel associated to the the SO(q) manifold W in
Theorem 2, and x, respectively y, is any ele-
ment of the SO(q)-orbit associated to the leaf
closure containing ', respectively v'.

Theorem 4. The trace of the basic heat op-
erator satisfies

tr (e_tAB) ~ (47775)_6/2 (ao—l—

> ajg t1/2(1o0g t)k> ast— 0,
j=>1
0<k<Kp
where ¢ = dim M'/F, Kq is less than or equal
to the number of different leaf closure dimen-
sions, and ag = Vol (M’/?).



Corollary 3. The basic spectral counting func-
tion satisfies

Np(\) i= #{APAF < )}
N Vol(M'/F)
(4m)7/2r (54 1)

2\d/2
as \ — oo.

For some specific types of Riemannian foli-
ations (finite holonomy, codimension one or
two), the heat asymptotics can be calculated
explicitly.



Example:

If (M',F) is codimension one without dense
leaves, then

tr (6—tAB) N\/iim(ao—l-alt—k...),

where
ag = Vol(M'/F),

3 >
= —(||H
ar = ([[H[2)7,

Thus, the spectrum of the basic Laplacian de-
termines the transverse volume and the L2 norm
of the mean curvature of the foliation. This

implies that one can “hear’” if the foliation is
minimal.



