Introduction to Group Actions

Examples of sets of matrices that have the structure of groups $(A, B \in G \text{ implies } AB \in G \text{ and } A \in G \text{ implies } A^{-1} \in G)$:

$$O(3) = \{A \in M_3(\mathbb{R}) : A^T A = I\} = \{A \in M_3(\mathbb{R}) : A \text{ preserves geometry}\}.$$

$$G_{2\times 2} = \{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}\}$$

$$S^1 = \{\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} : \theta \in [0, 2\pi]\}$$

$$SU(2) = \{A \in M_2(\mathbb{C}) : A^* A = I \text{ and } \det A = 1\}$$

$$T = \{\begin{pmatrix} z & 0 \\ 0 & \overline{z} \end{pmatrix} \in M_2(\mathbb{C}) : |z| = 1\}.$$

These sets are also smooth manifolds – we call them Lie groups. For example, you can think of O(3) as a set inside \mathbb{R}^9 that satisfies a bunch of equations – a manifold of dimension 3, as it turns out. These groups act (multiplication with nice properties) on spaces:

O(3) and subgroups $\hat{G}_{2\times 2}$ and S^1 act on \mathbb{R}^3 , S^2 SU(2) and subgroup T act on $\mathbb{C}^2, \mathbb{R}^4, S^3$.

How do they "act"? By matrix multiplication. If G is the group that acts on the space X, then if $g, h \in G$ and $x \in X$, we have

$$g(hx) = (gh)x$$
$$Ix = x$$

An **orbit** of a point $x \in X$ is the set

$$O_x = \{gx : g \in G\}.$$

For example, if O(3) acts on S^2 , then the orbit of any point is all of S^2 . If S^1 acts on S^2 as above, then the orbit of a point is the latitude circle containing that point. Note that the north and south poles (0,0,1) and (0,0,-1) are fixed by all of S^1 , so they are their own orbits. If G_{2x^2} acts on S^2 , then the orbit of a typical point will be the union of four points, although there are exceptions (for example, the orbit of (-1,0,0) is itself, and the orbit of (0,0,1) is $\{(0,0,1),(0,0,-1)\}$).

The **isotropy subgroup** or **stabilizer subgroup** G_x of a point $x \in X$ is the set

$$G_x = \{g : gx = x\}.$$

Let's look at some examples. Consider the north pole NP = (0,0,1) on S^2 with the action of O(3). Then if $A \in O(3)$ fixes (0,0,1), that means that

$$A \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right),$$

so the last column of A must be $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Multiplying both sides by A^T , we get

$$A^T A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = A^T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

so that

$$A^T \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right)$$

also. This means that the last row of A is $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$, so

$$A = \left(\begin{array}{ccc} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Since $A \in O(3)$, this means that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(2)$ – the set of rotations and reflections in the (x, y) coordinates that fix the origin. So

$$O(3)_{NP} \cong O(2).$$

In general, the stabilizer $O(3)_{(x,y,z)}$ is a subgroup of O(3) that is conjugate to the stabilizer at the *NP*, the group of rotations/reflections that fixes that one point.

Let's look at some other examples of isotropy subgroups. In the case of S^1 acting on S^2 , the entire group fixes the north and south poles, and no element of the group fixes any other point. For $z \neq \pm 1$,

$$S^1_{(x,y,z)} = \{I\},\,$$

and

$$S^1_{(0,0,\pm 1)} = S^1.$$

Next, consider the group $G_{2\times 2}$ acting on S^2 . The isotropy subgroup of each point in

$$M_{0} = \{(x, y, z) \in S^{2} : z \neq 0, y \neq 0\} \text{ is } G_{0} = \{(0, 0)\}, \text{ points of the set } M_{2} = \{(x, y, z) \in S^{2} : z = 0, y \neq 0\} \text{ have isotropy subgroup}$$

$$G_{2} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right\}, \text{ points in } M_{1} = \{(x, y, z) \in S^{2} : y = 0, z \neq 0\}$$
have isotropy subgroup $G_{1} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \text{ and points of } G_{1} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \text{ and points of } G_{2} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \text{ and points of } G_{2} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \text{ and points of } G_{2} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \text{ and points of } G_{2} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$

 $M_3 = \{(1,0,0), (-1,0,0)\}$ have isotropy subgroup $G_3 = G_{2\times 2}$. An important theorem in transformation group theory is

Proposition If M is a G-manifold, then for every $x \in M$, the orbit O_x is diffeomorphic to the homogeneous space G/G_x .

For example, if we define $\phi: S^2 \to O(3)/S^1$ by

$$\phi(x,y,z)=gS^1,$$

where $g \in O(3)$ is any element of O(3) that maps NP = (0,0,1) to $(x,y,z) \in S^2$ (turns out it doesn't matter which one you pick), then this map is a diffeomorphism. The general situation is similar.

submanifold. In the examples above, the notation is consistent to that in this paragraph. For example, the torus action on S^3 in Example ref: torus Action yields three strata, with M_0 being the principal stratum and M_1 and M_2 each being a most singular stratum.

If M_j is a most singular stratum, let $T_{\varepsilon}(M_j)$ denote an open tubular neighborhood of M_j of radius $\varepsilon > 0$. If ε is sufficiently small, then all orbits in $T_{\varepsilon}(M_j) \setminus M_j$ are of type $[G_k]$, where $[G_k] < [G_j]$.

Desingularization construction

With notation as in the previous section, we will construct a new G-manifold N that has a single stratum (of type $[G_0]$) and that is a branched cover of M, branched over the singular strata. A distinguished fundamental domain of M_0 in N is called the desingularization of M and is denoted \widetilde{M} . The significance of this construction is that it appears in the equivariant index

theorem in cite: BKR, and the analysis of transversally elliptic operators on M may be replaced by analysis on M, which is much easier to understand.

A sequence of constructions is used to construct N and $\widetilde{M} \subset N$. Let M_j be a most singular stratum. Let $T_{\varepsilon}(M_j)$ denote a tubular neighborhood of radius ε around M_j , with ε chosen sufficiently small so that all orbits in $T_{\varepsilon}(M_j) \setminus M_j$ are of type $[G_k]$, where $[G_k] < [G_j]$. Let

$$N^1 = (M \setminus T_{\varepsilon}(M_i)) \cup_{\partial T_{\varepsilon}(M_i)} (M \setminus T_{\varepsilon}(M_i))$$

be the manifold constructed by gluing two copies of $(M \setminus T_{\varepsilon}(M_j))$ smoothly along the boundary. Since the $T_{\varepsilon}(M_j)$ is saturated (a union of G-orbits), the G-action lifts to N^1 . Note that the strata of the G-action on N^1 correspond to strata in $M \setminus T_{\varepsilon}(M_j)$. If $M_k \cap (M \setminus T_{\varepsilon}(M_j))$ is nontrivial, then the stratum corresponding to isotropy type $[G_k]$ on N^1 is

$$N_k^1 = (M_k \cap (M \setminus T_{\varepsilon}(M_j))) \cup_{(M_k \cap \partial T_{\varepsilon}(M_j))} (M_k \cap (M \setminus T_{\varepsilon}(M_j))).$$

Thus, N^1 is a G-manifold with one fewer stratum than M, and $M \setminus M_j$ is diffeomorphic to one copy of $(M \setminus T_{\varepsilon}(M_j))$, denoted \widetilde{M}^1 in N^1 . In fact, N^1 is a branched double cover of M, branched over M_j . If N^1 has one orbit type, then we set $N = N^1$ and $\widetilde{M} = \widetilde{M}^1$. If N^1 has more than one orbit type, we repeat the process with the G-manifold N^1 to produce a new G-manifold N^2 with two fewer orbit types than M and that is a 4-fold branched cover of M. Again, \widetilde{M}^2 is a fundamental domain of $\widetilde{M}^1 \setminus \{$ a most singular stratum $\}$, which is a fundamental domain of M with two strata removed. We continue until $N = N^{r-1}$ is a G-manifold with all orbits of type $[G_0]$ and is a 2^{r-1} -fold branched cover of M, branched over $M \setminus M_0$. We set $\widetilde{M} = \widetilde{M}^{r-1}$, which is a fundamental domain of M_0 in N.

As mentioned earlier, if M is equipped with a G-equivariant, transversally elliptic differential operator on sections of an equivariant vector bundle over M, then this data may be pulled back to the desingularization \widetilde{M} . Given the bundle and operator over N^j , simply form the invertible double of the operator on N^{j+1} , which is the double of the manifold with boundary $N^j \setminus T_{\varepsilon}(\Sigma)$, where Σ is a most singular stratum on N^j .

Further, one may independently desingularize $M_{\geq j}$, since this submanifold is itself a closed G-manifold. If $M_{\geq j}$ has more than one connected component, we may desingularize all components simultaneously. Note that the isotropy type of all points of $\widetilde{M_{\geq j}}$ is $[G_j]$, and the $\widetilde{M_{\geq j}}/G$ is a smooth (open) manifold.

- BKR J. Brüning, F. W. Kamber, and K. Richardson, *The eta invariant and equivariant index of transversally elliptic operators*, preprint in preparation.
- PR I. Prokhorenkov and K. Richardson, *Natural equivariant Dirac operators*, preprint in preparation.