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A long time ago 

in a university 

far, far away . . .



Let M be a smooth, closed 

manifold, and let 

D : G(M,E)  G(M,F)

be an elliptic operator.

Index(D) := dim ker D – dim          r D

= dim ker D – dim ker D*

(in presence of metrics)

Atiyah-Singer Index Thm:

Index(D) = ∫M 
AS

Index Theory and

Non – Noncommutative geometry



Index (d+d*|even odd ) = c(M) = ∫
M

K/2p

Index (d+d*|+  – ) = Sign(M) = ∫M  Ł

Index (+) = ∫M  Â

Examples





Let G be a compact Lie group that acts by isometries on a 

closed, connected manifold M, and let E = E+⊕E– be a graded 

G -vector bundle over M. Let D: G(M, E+)→ G(M, E–) be

G -equivariant and merely transversally elliptic.

The vector spaces ker D and ker D* are typically infinite 

dimensional, and G acts as a group representation on each of 

them. These representations can be decomposed as direct sums

of irreducible representations r. Thus, ker D @ mr
+ [r] and 

ker D* @ mr
- [r] , where [r] is the equivalence class of the

irreducible representation r, and mr
 is the multiplicity of that 

representation in the kernel. (Lemma: mr
 is finite.)



Equivariant Index Theory, continued

The index multiplicity of the representation r is defined to be 

indr (D ) = mr
+ - mr

-

The index of D on the space of invariant sections is

ind1 (D ) = index (DG) = m1
+ - m1

-

The representation-valued index is the formal sum

ind (D ) = mr
+ - mr

-)[r] ,

and the distribution-valued index is the virtual character

indg (D ) = mr
+ - mr

-)cr(g) , 

where cr = tr(r) is the trace of the representation r.



Equivariant Index Theory Results

Formulas for indg (D ) :
Elliptic Case (Atiyah, Segal, Singer)

Transversally Elliptic Case (Berline and Vergne)

indg (D )f) = ∫vTeG (∫Mexp(v) BVf(exp(v)) ))dg(exp(v))

and

indr (D ) = ?????
•partial results: if isotropy subgroups have constant dimension 

(Atiyah, Kawasaki – equivalent to orbifold index theorem)



Index Theory on Manifolds with Boundary

Let X be a smooth, compact manifold with boundary Y, and let 

D : G( X , E ; P0 )  G( X , F ; P>0 )
be an elliptic operator.  

Near Y, the operator D has the form

D = Z ( r + A ).
The boundary condition at Y is P0 u = 0, 

where P0 is the spectral projection 

onto the eigenspaces of A with 

nonnegative eigenvalues.

Atiyah-Patodi-Singer Index Thm:

Index(D ; P0) = ∫X  
AS - h/2 -

h/2



on Riemannian foliations
Joint work with Franz Kamber and Jochen Brüning

Let (M,F) be a smooth, Riemannian foliation, and let

! be a basic connections on foliated bundles E! over 

M. Let Gb(M,F ;E!) = { u c G(M,E!) | !X u = 0 for every 

X c T F }
be the set of basic sections. Let Db :Gb(M,F ;E+)  Gb(M,F ;E-)

be a transversally elliptic operator that preserves basic-ness.

Theorem (EK; R; BKR): (1) Db is Fredholm. 

(2) There is an explicit operator D on G-invariant 

sections of a  G-equivariant vector bundle over the 

basic manifold such that G=O(q) or SO(q) and 

Index(Db) = Index(DG).



Joint work with Franz Kamber and Jochen Brüning

As before, let G be a compact Lie group that acts by 

isometries on a closed, connected manifold M, and let 

E = E+⊕E– be a graded G -vector bundle over M. Let 

D: G(M, E+)→ G(M, E–) be G -equivariant and  transversally 

elliptic.

Problem: Compute

Index(DG) = dim ker DG – dim ker (D* ) G

Background: M is stratified by the action of G. The isotropy 

subgroup of xM is the set of gG that fix x. The isotropy type

is the conjugacy class of the isotropy subgroup. The set of all 

xM of a given isotropy type is called a stratum. The strata are 

foliated by orbits. 



Joint work with Franz Kamber and Jochen Brüning

Assume that the action of G on M has only two strata, the 

principal stratum M0 and the singular stratum S. Assume that D 

= Z ( r + r -1DS )+DS = Z ( r + r -1DS )*DS near S.

Assume DS does not depend on r and that its invariant 

eigenvalues do not depend on S; assume that DS is the pullback 

of an operator on S. And ...

Main Theorem:

Index [DG] =

∫M0 /G  
(AS)G – ½h[(DS)G].Index[(DS)G]



Riemannian Foliation version of Gauss-

Bonnet Theorem

c(M, F ) = Fi c(Li , F , Oi) c(M(Hi)BFc),

where M(Hi) is the closure of the stratum 

corresponding to infinitessimal holonomy 

type [Hi], Li is a representative leaf closure 

of type [Hi], Fc is the singular leaf closure foliation,

and Oi is the orientation line bundle of M(Hi)BFc .


