Generalized equivariant index theory

Ken Richardson Foliations 2005

Wydział Matematyki Uniwersytetu Łódzkiego

June 20, 2005

Thanks

- ·Wydział Matematyki Uniwersytetu Łódzkiego
- Paweł Walczak
- Maciej Czarnecki
- · Takashi Tsuboi
- ·Rémi Langevin
- ·Stęve Hurder

Special Thanks:

- · Marysia Walczak
- · Milena Pabiniak
- Kasia Przybył
- ·Paulina Pawłowska
- Rafał Zduńczyk
- ·Zofia Walczak

A long time ago

in a university

far, far away ...

Index Theory and Non – Noncommutative geometry

Let M be a smooth, closed manifold, and let $D: \Gamma(M,E) \to \Gamma(M,F)$ be an elliptic operator. Index $(D) := \dim \ker D - \dim \operatorname{Coke} r D$ = dim ker D - dim ker D^* (in presence of metrics)

Atiyah-Singer Index Thm:

$$Index(D) = \int_{M} AS$$

Examples

Index
$$(d+d*/_{\text{even}\rightarrow\text{odd}}) = \chi(M) = \int_M K/_{2\pi}$$

Index
$$(d+d*/_{+\to-}) = \operatorname{Sign}(M) = \int_M L$$

$$\mathbf{Index} \left(\partial^{+} \right) = \int_{M} \hat{\mathbf{A}}$$

Equivariant Index Theory

Let G be a compact Lie group that acts by isometries on a closed, connected manifold M, and let $E = E^+ \oplus E^-$ be a graded G-vector bundle over M. Let $D: \Gamma(M, E^+) \to \Gamma(M, E^-)$ be G-equivariant and merely transversally elliptic.

The vector spaces $\ker D$ and $\ker D^*$ are typically infinite dimensional, and G acts as a group representation on each of them. These representations can be decomposed as direct sums of irreducible representations ρ . Thus, $\ker D \cong \bigoplus m_{\rho}^{+}[\rho]$ and $\ker D^* \cong \bigoplus m_{\rho}^{-}[\rho]$, where $[\rho]$ is the equivalence class of the irreducible representation ρ , and m_{ρ}^{\pm} is the multiplicity of that representation in the kernel. (Lemma: m_{ρ}^{\pm} is finite.)

Equivariant Index Theory, continued

The *index multiplicity* of the representation ρ is defined to be ind $_{\rho}(D)=m_{\rho}^{\ +}-m_{\rho}^{\ -}$

The index of D on the space of *invariant sections* is $\operatorname{ind}_1(D) = \operatorname{index}(D^G) = m_1^+ - m_1^-$

The representation-valued index is the formal sum

ind
$$(D) = \bigoplus (m_{\rho}^{+} - m_{\rho}^{-})[\rho],$$

and the distribution-valued index is the virtual character

$$\operatorname{ind}_{g}(D) = \bigoplus \left(m_{\rho}^{+} - m_{\rho}^{-}\right) \chi_{\rho}(g),$$

where $\chi_{\rho} = \text{tr}(\rho)$ is the trace of the representation ρ .

Equivariant Index Theory Results

Formulas for $ind_g(D)$:

Elliptic Case (Atiyah, Segal, Singer)

Transversally Elliptic Case (Berline and Vergne)

$$\operatorname{ind}_{g}(D)(\phi) = \int_{v \in T_{eG}} \left(\int_{M^{\exp(v)}} BV_{(\phi(\exp(v)))} \right) dg(\exp(v))$$

and

$$\operatorname{ind}_{\rho}(D) = ?????$$

•partial results: if isotropy subgroups have constant dimension (Atiyah, Kawasaki – equivalent to orbifold index theorem)

Index Theory on Manifolds with Boundary

Let X be a smooth, compact manifold with boundary Y, and let

$$D:\Gamma(X,E;P_{\geq 0})\to\Gamma(X,F;P_{> 0})$$

be an elliptic operator.

Near Y, the operator D has the form

$$D = Z (\partial_r + A).$$

The boundary condition at Y is $P_{\geq 0}u = 0$, where $P_{\geq 0}$ is the spectral projection onto the eigenspaces of A with nonnegative eigenvalues.

Atiyah-Patodi-Singer Index Thm:

Index(
$$D; P_{\geq 0}$$
) = $\int_X AS - \eta/_2 - h/_2$

Basic Index Theory on Riemannian foliations

Joint work with Franz Kamber and Jochen Brüning

Let (M,F) be a smooth, Riemannian foliation, and let ∇ be a basic connections on foliated bundles E over M. Let $\Gamma_b(M,F;E') = \{ u \text{ in } \Gamma(M,E') \mid \nabla^{\ell}_X u = 0 \text{ for every } X \text{ in } TF \}$ be the set of *basic sections*. Let $D_b:\Gamma_b(M,F;E^+) \to \Gamma_b(M,F;E^-)$

Theorem (EK; R; BKR): (1) D_b is Fredholm. (2) There is an explicit operator D on G-invariant sections of a G-equivariant vector bundle over the basic manifold such that G=O(q) or SO(q) and Indov(D) = Indov(DG)

be a transversally elliptic operator that preserves basic-ness.

The Invariant Index

Joint work with Franz Kamber and Jochen Brüning

As before, let G be a compact Lie group that acts by isometries on a closed, connected manifold M, and let $E = E^+ \oplus E^-$ be a graded G -vector bundle over M. Let $D: \Gamma(M, E^+) \to \Gamma(M, E^-)$ be G -equivariant and transversally elliptic.

Problem: Compute

 $Index(D^G) = \dim \ker D^G - \dim \ker (D^*)^G$

Background: M is stratified by the action of G. The *isotropy* subgroup of $x \in M$ is the set of $g \in G$ that fix x. The *isotropy type* is the conjugacy class of the isotropy subgroup. The set of all $x \in M$ of a given isotropy type is called a *stratum*. The strata are foliated by orbits.

The Invariant Index

Joint work with Franz Kamber and Jochen Brüning

Assume that the action of G on M has only two strata, the principal stratum M_0 and the singular stratum Σ . Assume that D

=
$$Z (\partial_r + r^{-1}D^S) + D^\Sigma = Z (\partial_r + r^{-1}D^S) * D^\Sigma \operatorname{near} \Sigma$$
.

Assume D^s does not depend on r and that its invariant eigenvalues do not depend on Σ ; assume that D^Σ is the pullback of an operator on Σ . And ...

Main Theorem:

Index
$$[D^G] =$$

$$\int_{M_0/G} (AS)^G - \frac{1}{2} \eta [(D^S)^G] \cdot Index [(D^\Sigma)^G]$$

Riemannian Foliation version of Gauss-Bonnet Theorem

$$\chi(M,F) = \sum_{i} \chi(L_{i},F,O_{i}) \chi(M(H_{i})/F_{c}),$$

where $M(H_i)$ is the closure of the stratum corresponding to infinitessimal holonomy type $[H_i]$, L_i is a representative leaf closure of type $[H_i]$, F_c is the singular leaf closure foliation, and O_i is the orientation line bundle of $M(H_i)/F_c$.