Artin groups via mapping class groups

Ignat Soroko

Southern Methodist University
isoroko@int.edu

GAGA seminar, TCU, September 2, 2025

Braid groups and Hyperplane arrangements

Let $V = \mathbb{C}^3$ with coordinates (x_1, x_2, x_3) . The type A_2 reflection arrangement is

$$H_{12} = \{x_1 = x_2\}, \quad H_{13} = \{x_1 = x_3\}, \quad H_{23} = \{x_2 = x_3\}.$$

The complement is $M = V \setminus (H_{12} \cup H_{13} \cup H_{23})$.

M is the configuration space of *ordered* triples of *distinct* points in \mathbb{C} .

 $P_{A_2} = \pi_1(M)$ (pure braids); $A_{A_2} = \pi_1(M/S_3) \cong B_3$ (all braids on 3 strands)

From arrangements to Artin groups

- ▶ **Reflection setup:** finite Coxeter group W on $V \cong \mathbb{C}^n$; reflecting hyperplanes $\{H_s\}$.
- ▶ Pure vs. full:

$$P_W = \pi_1(V \setminus \bigcup H_s), \qquad A_W = \pi_1((V \setminus \bigcup H_s)/W),$$

fitting in the exact sequence $1 \rightarrow P_W \rightarrow A_W \rightarrow W \rightarrow 1$.

Here A_W **Artin group** with Coxeter group W

 P_W pure Artin group

Classical reflection arrangements: defining hyperplanes

Let $V = \mathbb{C}^n$ with coordinates (x_1, \ldots, x_n) .

- **► Type** A_{n-1} (braid): $x_i x_j = 0$ $(1 \le i < j \le n)$.
- **Type** B_n (hyperoctahedral): $x_i = 0$ (1 ≤ $i \le n$) and $x_i \pm x_j = 0$ (1 ≤ $i < j \le n$).
- ▶ **Type** D_n : $x_i \pm x_j = 0$ ($1 \le i < j \le n$) (no coordinate hyperplanes $x_i = 0$).
- ▶ **Dihedral** $I_2(m)$: m lines through the origin in \mathbb{C}^2 :

Pure vs. full Artin groups. For any finite W with reflecting hyperplanes $\{H_s\}$,

$$P_W = \pi_1(V \setminus \bigcup H_s), \qquad A_W = \pi_1((V \setminus \bigcup H_s)/W),$$

Also **exceptional arrangements**: E_6 , E_7 , E_8 , F_4 , H_3 , H_4 , defined by explicit hyperplane constructions.

Artin groups: general definition

- ► *S* finite set of generators
- ► $M = (m_{s,t})_{s,t \in S}$ a symmetric matrix of $\{0, 1, \dots, \infty\}$

Coxeter
$$qp = A/(s^2 \mid s \in S)$$

The **Artin group** corresponding to (S, M) is given by the presentation:

$$A = \left\langle S \mid \underbrace{stst...}_{m_{s,t}} = \underbrace{tsts...}_{m_{s,t}}, \quad \forall s, t \in S, \ s, t \neq \infty \right\rangle$$

encoded by the **Coxeter graph** with vertex set S and edges labeled by $m_{s,t}$:

Spherical Artin groups

Affine Artin groups: Coxeter group has \mathbb{Z}^n of finite index

- word problem, torsion-free, center: Brieskorn–Saito'1972, McCammond–Sulway'2017
- $K(\pi, 1)$ -conjecture holds: Deligne'1972, Paolini–Salvetti'21

- word problem, torsion-free, center: Brieskorn–Saito'1972, McCammond–Sulway'2017
- $K(\pi, 1)$ -conjecture holds: Deligne'1972, Paolini–Salvetti'21

Problem: Description of Aut(G), Out(G):

- $-\widetilde{A}_1 = F_2$: Nielsen'1918: $\operatorname{Out}(A(\widetilde{A}_1)) = GL(2, \mathbb{Z});$
- A_n : Dyer-Grossman'1981;
- $-I_2(m)$: Gilbert-Howie-Metaftsis-Raptis' 2000, Crisp-Paris' 2002;
- A_n , B_n , \widetilde{A}_n , \widetilde{C}_n : Charney-Crisp'2005;
- D_n ($n = 4, n \ge 6$): S.'21, Castel-Paris'2025+

That is all we know!

- word problem, torsion-free, center: Brieskorn-Saito'1972, McCammond-Sulway'2017
- $K(\pi, 1)$ -conjecture holds: Deligne'1972, Paolini–Salvetti'21

Problem: Description of Aut(G), Out(G): only known for a few cases!

- $-\widetilde{A}_1 = F_2$: Nielsen'1918: $\operatorname{Out}(A(\widetilde{A}_1)) = GL(2, \mathbb{Z});$
- A_n : Dyer-Grossman'1981;
- $-I_2(m)$: Gilbert-Howie-Metaftsis-Raptis'2000, Crisp-Paris'2002;
- A_n , B_n , \widetilde{A}_n , \widetilde{C}_n : Charney-Crisp'2005;
- D_n ($n = 4, n \ge 6$): S.'21, Castel-Paris'2025+

- word problem, torsion-free, center: Brieskorn-Saito'1972, McCammond-Sulway'2017
- $K(\pi, 1)$ -conjecture holds: Deligne'1972, Paolini–Salvetti'21

Problem: Description of Aut(G), Out(G): only known for a few cases!

- $-\widetilde{A}_1 = F_2$: Nielsen'1918: $\operatorname{Out}(A(\widetilde{A}_1)) = GL(2, \mathbb{Z});$
- A_n : Dyer-Grossman'1981;
- $-I_2(m)$: Gilbert-Howie-Metaftsis-Raptis' 2000, Crisp-Paris' 2002;
- A_n , B_n , \widetilde{A}_n , \widetilde{C}_n : Charney-Crisp'2005;
- D_n ($n = 4, n \ge 6$): S.'21, Castel-Paris'2025+

That is all we know!

- word problem, torsion-free, center: Brieskorn-Saito'1972, McCammond-Sulway'2017
- $K(\pi, 1)$ -conjecture holds: Deligne'1972, Paolini–Salvetti'21

Problem: Description of Aut(G), Out(G): only known for a few cases!

- $-\widetilde{A}_1 = F_2$: Nielsen'1918: $\operatorname{Out}(A(\widetilde{A}_1)) = GL(2, \mathbb{Z});$
- $-A_n$: Dyer-Grossman'1981;
- $-\underline{I_2(m)}$: Gilbert-Howie-Metaftsis-Raptis'2000, Crisp-Paris'2002;
- A_n , B_n) \widetilde{A}_n , \widetilde{C}_n : Charney-Crisp'2005; D_n (n = 4, $n \ge 6$): S.'21, Castel-Paris'2025+

That is all we know!

Q: What do the following Artin groups have in common?

Q: What do the following Artin groups have in common?

A: They admit geometric embeddings into mapping class groups!

Q: What do the following Artin groups have in common?

A: They admit geometric embeddings into mapping class groups!

Geometric = standard generators map to Dehn twists or half-twists.

Mapping class groups

Let $S = S_{g,b}$ be a compact, connected, oriented surface of genus g with $b \ge 0$ boundary components, and let $P \subset \text{Int}(S)$ be a finite set of n punctures.

The **mapping class group** of (S, P) is:

$$Mod(S, \partial S, P) := \pi_0(Diff^+(S; \partial S, P)),$$

where Diff⁺(S; ∂S , P) is the group of orientation-preserving diffeomorphisms that fix ∂S pointwise and permute P setwise. Isotopies are taken $rel \partial S \cup P$.

We mad out Lifecomorphisms isotopic to identity

We get a countable group!

Artin relations in mapping class groups

Dehn twists:

Half-twists:

• circles γ , δ intersect once / arcs α , β have common endpoint:

$$T_{\gamma}T_{\delta}T_{\gamma} = T_{\delta}T_{\gamma}T_{\delta}, \quad H_{\alpha}H_{\beta}H_{\alpha} = H_{\beta}H_{\alpha}H_{\beta}$$
 $(m_{st} = 3)$

• otherwise: $\langle T_{\gamma}, T_{\delta} \rangle \simeq F_2 \simeq \langle H_{\alpha}, H_{\beta} \rangle$ $(m_{st} = \infty)$

Artin relations in mapping class groups

Dehn twists:

$$\begin{array}{c|c}
\hline
 & \uparrow \\
\hline
 & \downarrow \\
 & \uparrow \\
 & \uparrow \\
\hline
 & \uparrow \\
 & \uparrow \\
\hline
 & \uparrow \\$$

Half-twists:

- circles γ , δ / arcs α , β disjoint: $T_{\gamma}T_{\delta} = T_{\delta}T_{\gamma}$, $H_{\alpha}H_{\beta} = H_{\beta}H_{\alpha}$ ($m_{st} = 2$)
- circles γ, δ intersect once / arcs α, β have common endpoint:

$$T_{\gamma}T_{\delta}T_{\gamma} = T_{\delta}T_{\gamma}T_{\delta}, \quad H_{\alpha}H_{\beta}H_{\alpha} = H_{\beta}H_{\alpha}H_{\beta}$$
 $(m_{st} = 3)$

• otherwise:
$$\langle T_{\gamma}, T_{\delta} \rangle \simeq F_2 \simeq \langle H_{\alpha}, H_{\beta} \rangle$$
 (1)

 $(m_{st}=\infty)$

Mixed relation (Labruére-Paris'01):

$$\left(\begin{array}{c} \alpha \\ \end{array}\right) \gamma$$

$$T_{\gamma} H_{\alpha} T_{\gamma} H_{\alpha} = H_{\alpha} T_{\gamma} H_{\alpha} T_{\gamma} \qquad (m_{st} = 4)$$

(Almost) all known geometric embeddings:

(Almost) all known geometric embeddings:

(Almost) all known geometric embeddings:

Recent developments

New advances:

- description of homomorphisms of A_n into MCG's, for $n \ge 6$ (Castel'16);
- description of homomorphisms from A_n to A_{2n}, for n ≥ 4 (Chen-Kordek-Margalit'19);

allowed obtaining the following new results:

- description of all endomorphisms of D_n , including automorphisms, for $n \ge 6$ (Castel-Paris'25+);
- ▶ description of all endomorphisms of \widetilde{A}_n , for $n \ge 4$ (Paris–S.'25);
- ▶ description of all endomorphisms of B_n , for $n \ge 5$ (Paris–S.'25);
- ▶ description of all endomorphisms of \widetilde{C}_n , for $n \ge 5$ (Paris–S., in preparation);
- ▶ R_{∞} property for A_n , B_n , \widetilde{A}_n , \widetilde{C}_n , D_n (Calvez–S.'22, S.–Vaskou'24).

Endomorphisms of \widetilde{A}_n :

Theorem (Paris-S.'25)

Let $n \geqslant 4$ and φ be an endomorphism of \widetilde{A}_n . Then, up to conjugacy, φ is either

Endomorphisms of \widetilde{A}_n :

Theorem (Paris-S.'25)

Let $n \geqslant 4$ and φ be an endomorphism of \widetilde{A}_n . Then, up to conjugacy, φ is either

cyclic

Endomorphisms of \widetilde{A}_n :

Theorem (Paris-S.'25)

Let $n \geqslant 4$ and φ be an endomorphism of \widetilde{A}_n . Then, up to conjugacy, φ is either

- cyclic, or
- an automorphism (description known before by Charney-Crisp'05): (dihedral group of graph autos) × (global inversion)
- or non-injective and non-surjective:

In "Problems on Mapping Class Groups and Related Topics" (edited by B. Farb, 2006), Joan Birman wrote:

In a very different direction, every mathematician would do well to have in his or her pile of future projects, in addition to the usual mix, a problem to dream about. In this category I put:

PROBLEM 3.3. Is there a faithful finite dimensional matrix representation of $\mathcal{M}_{g,b,n}$ for any value of the triplet (g,b,n) other than (1,0,0),(1,1,0),(1,0,1),(0,1,n),(0,0,n) or (2,0,0)?

In "Problems on Mapping Class Groups and Related Topics" (edited by B. Farb, 2006), Joan Birman wrote:

In a very different direction, every mathematician would do well to have in his or her pile of future projects, in addition to the usual mix, a problem to dream about. In this category I put:

PROBLEM 3.3. Is there a faithful finite dimensional matrix representation of $\mathcal{M}_{g,b,n}$ for any value of the triplet (g,b,n) other than (1,0,0),(1,1,0),(1,0,1),(0,1,n),(0,0,n) or (2,0,0)?

Theorem (S.'20, based on Labruére–Paris'01)

In "Problems on Mapping Class Groups and Related Topics" (edited by B. Farb, 2006), Joan Birman wrote:

In a very different direction, every mathematician would do well to have in his or her pile of future projects, in addition to the usual mix, a problem to dream about. In this category I put:

PROBLEM 3.3. Is there a faithful finite dimensional matrix representation of $\mathcal{M}_{g,b,n}$ for any value of the triplet (g,b,n) other than (1,0,0),(1,1,0),(1,0,1),(0,1,n),(0,0,n) or (2,0,0)?

Theorem (S.'20, based on Labruére-Paris'01)

Corollary. MCG(g, b, n) is linear for

$$(g, b, n) = (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3)$$

(since $Artin(D_4)$ is linear by Digne'03),

In "Problems on Mapping Class Groups and Related Topics" (edited by B. Farb, 2006), Joan Birman wrote:

In a very different direction, every mathematician would do well to have in his or her pile of future projects, in addition to the usual mix, a problem to dream about. In this category I put:

PROBLEM 3.3. Is there a faithful finite dimensional matrix representation of $\mathcal{M}_{g,b,n}$ for any value of the triplet (g,b,n) other than (1,0,0),(1,1,0),(1,0,1),(0,1,n),(0,0,n) or (2,0,0)?

Theorem (S.'20, based on Labruére-Paris'01)

(Pure)
$$MCG\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\} \simeq \operatorname{Artin}(D_4).$$
 D_4 :

Corollary. MCG(g, b, n) is linear for

$$(g, b, n) = (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3)$$

(since $Artin(D_4)$ is linear by Digne'03),

and also for
$$(g, b, n) = (0, m, n), m \ge 2, (1, 2, 0), (1, 1, 1), (1, 0, 2).$$

In "Problems on Mapping Class Groups and Related Topics" (edited by B. Farb, 2006), Joan Birman wrote:

In a very different direction, every mathematician would do well to have in his or her pile of future projects, in addition to the usual mix, a problem to dream about. In this category I put:

PROBLEM 3.3. Is there a faithful finite dimensional matrix representation of $\mathcal{M}_{g,b,n}$ for any value of the triplet (g,b,n) other than (1,0,0),(1,1,0),(1,0,1),(0,1,n),(0,0,n) or (2,0,0)?

Theorem (S.'20, based on Labruére-Paris'01)

(Pure)
$$MCG \left\{ \begin{array}{c} \circ \\ \circ \\ \end{array} \right\} \simeq \operatorname{Artin}(D_4).$$

$$D_4$$
:

Corollary. MCG(g, b, n) is linear for

$$(g, b, n) = (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3)$$

(since $Artin(D_4)$ is linear by Digne'03),

and also for
$$(g, b, n) = (0, m, n), m \ge 2, (1, 2, 0), (1, 1, 1), (1, 0, 2).$$

- Lee-Lee'10: uniqueness of roots up to conjugacy in B_n , \widetilde{A}_n , \widetilde{C}_n .
- Digne'12: existence of a Garside structure on \widetilde{C}_n .
- Calvez-Cisneros de la Cruz'21: curve graphs for B_n , \widetilde{A}_n , \widetilde{C}_n .

- Lee–Lee'10: uniqueness of roots up to conjugacy in B_n , \widetilde{A}_n , \widetilde{C}_n .
- Digne'12: existence of a Garside structure on \widetilde{C}_n .
- Calvez-Cisneros de la Cruz'21: curve graphs for B_n , \widetilde{A}_n , \widetilde{C}_n .
- Commensurability (≈) of spherical Artin groups: (i.e. are there isomorphic finite index subgroups?)

- Lee-Lee'10: uniqueness of roots up to conjugacy in B_n , \widetilde{A}_n , \widetilde{C}_n .
- Digne'12: existence of a Garside structure on \widetilde{C}_n .
- Calvez-Cisneros de la Cruz'21: curve graphs for B_n , \widetilde{A}_n , \widetilde{C}_n .
- Commensurability (≈) of spherical Artin groups: (i.e. are there isomorphic finite index subgroups?)

Theorem (Cumplido-Paris'22)

- 1. if two spherical Artin groups are commensurable, then their ranks are equal and all indecomposable components are mutually commensurable
- 2. the only irreducible spherical Artin groups commensurable with A_n are: $A_n \approx B_n$ and $A_2 \approx I_2(m)$, $m \ge 3$.

- Lee–Lee'10: uniqueness of roots up to conjugacy in B_n , \widetilde{A}_n , \widetilde{C}_n .
- Digne'12: existence of a Garside structure on \widetilde{C}_n .
- Calvez-Cisneros de la Cruz'21: curve graphs for B_n , \widetilde{A}_n , \widetilde{C}_n .
- Commensurability (≈) of spherical Artin groups: (i.e. are there isomorphic finite index subgroups?)

Theorem (Cumplido-Paris'22)

- 1. if two spherical Artin groups are commensurable, then their ranks are equal and all indecomposable components are mutually commensurable
- 2. the only irreducible spherical Artin groups commensurable with A_n are: $A_n \approx B_n$ and $A_2 \approx I_2(m)$, $m \geqslant 3$.

This takes care of infinite series A_n , B_n , D_n , and leaves only six cases undecided: (D_4, F_4) , (D_4, H_4) , (F_4, H_4) , (D_6, E_6) , (D_7, E_7) , (D_8, E_8) .

- Lee–Lee'10: uniqueness of roots up to conjugacy in B_n , \widetilde{A}_n , \widetilde{C}_n .
- Digne'12: existence of a Garside structure on \widetilde{C}_n .
- Calvez–Cisneros de la Cruz'21: curve graphs for B_n , \widetilde{A}_n , \widetilde{C}_n .
- Commensurability (≈) of spherical Artin groups: (i.e. are there isomorphic finite index subgroups?)

Theorem (Cumplido-Paris'22)

- 1. if two spherical Artin groups are commensurable, then their ranks are equal and all indecomposable components are mutually commensurable
- 2. the only irreducible spherical Artin groups commensurable with A_n are: $A_n \approx B_n$ and $A_2 \approx I_2(m)$, $m \geqslant 3$.

This takes care of infinite series A_n , B_n , D_n , and leaves only six cases undecided: (D_4, F_4) , (D_4, H_4) , (F_4, H_4) , (D_6, E_6) , (D_7, E_7) , (D_8, E_8) .

Theorem (S.'21) $D_4 \not\approx F_4$, $D_4 \not\approx H_4$.

- Lee–Lee'10: uniqueness of roots up to conjugacy in B_n , \widetilde{A}_n , \widetilde{C}_n .
- Digne'12: existence of a Garside structure on \widetilde{C}_n .
- Calvez-Cisneros de la Cruz'21: curve graphs for B_n , \widetilde{A}_n , \widetilde{C}_n .
- Commensurability (≈) of spherical Artin groups: (i.e. are there isomorphic finite index subgroups?)

Theorem (Cumplido-Paris'22)

- 1. if two spherical Artin groups are commensurable, then their ranks are equal and all indecomposable components are mutually commensurable
- 2. the only irreducible spherical Artin groups commensurable with A_n are: $A_n \approx B_n$ and $A_2 \approx I_2(m)$, $m \geqslant 3$.

This takes care of infinite series A_n , B_n , D_n , and leaves only six cases undecided: (D_4, F_4) , (D_4, H_4) , (F_4, H_4) , (D_6, E_6) , (D_7, E_7) , (D_8, E_8) .

Theorem (S.'21) $D_4 \not\approx F_4$, $D_4 \not\approx H_4$.

There is some hope for resolving cases (D_6, E_6) , (D_7, E_7) , (D_8, E_8) , but (F_4, H_4)

is a really hard nut to crack!

Motivation: deformations of singularities: Arnold, Milnor, Brieskorn, \dots

Motivation: deformations of singularities: Arnold, Milnor, Brieskorn, ...

Answer 1: The following CANNOT be realized:

- ► Labruére'97:

 Wainryb'99:
- Wajnryb'99: E_6 E_7

Motivation: deformations of singularities: Arnold, Milnor, Brieskorn, ...

Answer 1: The following CANNOT be realized:

- ► Labruére'97:

 ► Wajnryb'99:

 E₆

 E₇

 E₈
- Answer 2:

Motivation: deformations of singularities: Arnold, Milnor, Brieskorn, \dots

Answer 1: The following CANNOT be realized:

- ► Labruére'97:

 ► Wajnryb'99:

 E₆

 E₇

 E₈
- -0 -7

Answer 2:

Motivation: deformations of singularities: Arnold, Milnor, Brieskorn, \dots

Answer 1: The following CANNOT be realized:

- ► Labruére'97:
- ► Wajnryb'99: E_6 E_7 E_8

Answer 2:

- Ryffel'23: classified ALL realizations of

Motivation: deformations of singularities: Arnold, Milnor, Brieskorn, ...

Answer 1: The following CANNOT be realized:

- ► Labruére'97:
- ► Wajnryb'99: E_6 E_7 E_8

Answer 2:

- ▶ Ryffel'23: classified ALL realizations of

Immediate benefits:

- word problem
- residual finiteness
- description of center

Immediate benefits:

- word problem
- residual finiteness
- description of center

Take your favorite cubical graph:

Immediate benefits:

- word problem
- residual finiteness
- description of center

Take your favorite cubical graph:

no induced E6:

There is no obvious obstruction for it to be realizable!

References

- ▶ I. Soroko, Linearity of some low-complexity mapping class groups. *Forum Mathematicum*, 32 (2020), no. 2, 279–286.
- ▶ I. Soroko, Artin groups of types F_4 and H_4 are not commensurable with that of type D_4 , *Topology and its Applications*, 300 (2021), 107770.
- ▶ M. Calvez, I. Soroko, Property R_{∞} for some spherical and affine Artin–Tits groups. *Journal of Group Theory* 25, 6 (2022), 1045–1054.
- ▶ I. Soroko, N. Vaskou, Property R_{∞} for new classes of Artin groups, arXiv:2409.18123.
- L. Paris, I. Soroko, Endomorphisms of Artin groups of type \widetilde{A}_n . *Journal of Algebra*, Volume 678 (2025), 809–830.
- ► L. Paris, I. Soroko, Endomorphisms of Artin groups of type *B_n*. *Journal of Algebra*, Volume 678 (2025), 831–861.

Thank you!