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Braid groups and Hyperplane arrangements
Let V = C? with coordinates (x1, X2, x3). The type A, reflection arrangement
is
Hi; ={x1 =x}, Hps={x=x}, Hs={x=x}.
The complement is M = V' \ (Hj2 U Hys U Has).

M is the configuration space of ordered triples of distinct points in C.
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Py, = m1(M) (pure braids); Aa, = m (M /S3) = Bs(all braids on 3 strands)



From arrangements to Artin groups

> Reflection setup: finite Coxeter group W on V = C"; reflecting
hyperplanes {H,}.
» Pure vs. full:

Py =m(VA\JH),  Aw=m((V\|JH)/W),

fitting in the exact sequence 1 — Py — Ay — W — 1.

Here Ay Artin group with Coxeter group W

Py, pure Artin group



Classical reflection arrangements: defining hyperplanes

Let V = C" with coordinates (xi, .. ., xp).
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Type Ap— (braid): x—x,=0 (1<i<j<n).
Type B, (hyperoctahedral): x; =0 (1 < i< n)and
xitx=001<i<j<n).

Type D,: x;+x; =0 (1 < i < j < n) (no coordinate hyperplanes
Xi = 0)

Dihedral I(m): m lines through the origin in C%:

Pure vs. full Artin groups. For any finite W with reflecting hyperplanes

{Hs},

Py =m(VAJH),  Aw=m((V\[JH)/W),

Also exceptional arrangements: Eq, E7, Eg, Fy, Hs, Hy, defined by explicit
hyperplane constructions.



Artin groups: general definition
Coxelder -

» S finite set of generators A / { \ 5¢ SO
» M = (my;)s cs a symmetric matrix of {0, 1,..., 00}

The Artin group corresponding to (S, M) is given by the presentation:

A:<S‘ stst...=1tsts..., Vs, t€S, s,t7é00>
= =
ms,t ms,t

encoded by the Coxeter graph with vertex set S and edges labeled by m ;:

Convention: mg; = 2: no edge, mg; = 3: label omitted
5‘\' =45 5-\:5 = ‘\.'5'\7
Examples: o o -—-——-—o— braid grou A
p s, s, = P group (An)
o0 (0. @]
free group F; S, S, = 6-567
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Spherical Artin groups
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Classical problems: Spherical vs Affine

e word problem, torsion-free, center: Brieskorn-Saito’1972,
McCammond-Sulway’2017

e K(m,1)-conjecture holds: Deligne’1972, Paolini-Salvetti’21
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Q: What do the following Artin groups have in common?

A: They admit geometric embeddings into mapping class groups!

Geometric = standard generators map to Dehn twists or half-twists.



Mapping class groups
Let S = S; ; be a compact, connected, oriented surface of genus g with b > 0
boundary components, and let P C Int(S) be a finite set of n punctures.

The mapping class group of (S, P) is:
Mod(S, 8S, P) := m, (Diff " (S; 95, P)) ,
where Diff *(S; 95, P) is the group of orientation-preserving

diffeomorphisms that fix S pointwise and permute P setwise. Isotopies are
taken rel S U P.

We wed od bleomocphisms
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Artin relations in mapping class groups

1 T ‘
Dehn twists: H ¥E :" - ‘m~

Half-twists: @ e @

e circles vy, 0 / arcs v, B disjoint: T, T5 = TsT,, H,Hs = HgH, (my = 2)
e circles v, 0 intersect once / arcs o, 5 have common endpoint:

T,TsT, = TsT,Ts, H.,HgH, = HgH,Hg (mg = 3)

e otherwise: (T, T5) ~ F, ~ (H,, Hg) (mg = 00)



Artin relations in mapping class groups

I T’Y ‘
Dehn twists: ' ’ e, :" ‘mh
Re H

o & ¢
Half-twists: O e @ /\'

e circles vy, 0 / arcs v, B disjoint: T, T5 = TsT,, H,Hs = HgH, (my = 2)
e circles v, 0 intersect once / arcs o, 5 have common endpoint:

TryT[sT,y = T(;T7 Ts, HaHgHa = HﬁHaHﬁ (mst = 3)

e otherwise: (T, T5) ~ F, ~ (H,, Hg) (mg = 00)

Mixed relation (Labruére-Paris’01):

T,H, T,y Ho = Hy T, H, T, (my = 4)



(Almost) all known geometric embeddings:
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(Almost) all known geometric embeddings:
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finite index in MCG(sphere)
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(Almost) all known geometric embeddings:

Ay
finite index in MCG(sphere)

infinite index in MCG



Recent developments

New advances:

e description of homomorphisms of A, into MCG’s, for n > 6 (Castel’16);

e description of homomorphisms from A, to A;,, forn > 4
(Chen-Kordek-Margalit’19);

allowed obtaining the following new results:

» description of all endomorphisms of D,, including automorphisms, for
n > 6 (Castel-Paris’25+);
» description of all endomorphisms of En, for (Paris—S.25);

n-=4
description of all endomorphisms of B, for n > 5 (Paris—S.25);
n=>5

v

» description of all endomorphisms of Cy, for (Paris-S., in
preparation);

» R property for A,, By, Zﬁn, E‘n, D, (Calvez-S.22, S.-Vaskou’24).
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Endomorphisms of Ap:

Theorem (Paris—S.’25)
Let n > 4 and ¢ be an endomorphism ofﬁ,,. Then, up to conjugacy, ¢ is either
e cyclic, or

e an automorphism (description known before by Charney—Crisp’05):
(dihedral group of graph autos) x (global inversion)

e or non-injective and non-surjective:




Benefits for mapping class groups:

In “Problems on Mapping Class Groups and Related Topics” (edited by
B. Farb, 2006), Joan Birman wrote:

In a very different direction, every mathematician would do well to have in his or her pile of
future projects, in addition to the usual mix, a problem to dream about. In this category I put:

PROBLEM 3.3. Is there a faithful finite dimensional matriz representation of Mgy, for any
value of the triplet (g,b,n) other than (1,0,0),(1,1,0),(1,0,1),(0,1,n),(0,0,n) or (2,0,0)?
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Other applications of geometric embeddings into MCG’s:
e Lee—Lee’10: uniqueness of roots up to conjugacy in By, Zn, E’,,.
e Digne’12: existence of a Garside structure on Co.
e Calvez—Cisneros de la Cruz’21: curve graphs for B, Zﬁn, E‘n.
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Other applications of geometric embeddings into MCG’s:
Lee-Lee’10: uniqueness of roots up to conjugacy in By, ;\n, E,,.
Digne’12: existence of a Garside structure on Co.

Calvez—Cisneros de la Cruz’21: curve graphs for B,, An, E‘n.

Commensurability (X) of spherical Artin groups: (i.e. are there
isomorphic finite index subgroups?)

Theorem (Cumplido—Paris’22)
1. if two spherical Artin groups are commensurable, then their ranks are
equal and all indecomposable components are mutually commensurable

2. the only irreducible spherical Artin groups commensurable with A, are:
A, ~ B, and Ay =~ I,(m), m > 3.
This takes care of infinite series A,, B,, D,, and leaves only six cases
undecided: (D4./ F4), (D47 H4), (F47 H4), (D()7 E()), (D77 E7), (Dg, Eg)
Theorem (S)21) D, # F;, Dy % H,.
There is some hope for resolving cases (Ds., E), (D7, E7), (Ds, Es), but
(F47 H4)
is a really hard nut to crack!
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Open Problem: Which Artin groups are realizable by Dehn twists?

Immediate benefits:
e word problem
e residual finiteness

e description of center

Take your favorite cubical graph: o ad E
,. o__a——re—ﬂ

There is no obvious obstruction for it to be realizable!
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