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Braid groups and Hyperplane arrangements
Let V = C3 with coordinates (x1, x2, x3). The type A2 re�ection arrangement
is

H12 = {x1 = x2}, H13 = {x1 = x3}, H23 = {x2 = x3}.
The complement is M = V \ (H12 [ H13 [ H23).
M is the con�guration space of ordered triples of distinct points in C.

PA2 = ⇡1(M) (pure braids); AA2 = ⇡1(M/S3) ⇠= B3(all braids on 3 strands)

Pity
M·↓ 10 , 17 -> M



From arrangements to Artin groups

I Re�ection setup: �nite Coxeter groupW on V ⇠= Cn; re�ecting
hyperplanes {Hs}.

I Pure vs. full:

PW = ⇡1
�
V \

[
Hs
�
, AW = ⇡1

�
(V \

[
Hs)/W

�
,

�tting in the exact sequence 1 ! PW ! AW ! W ! 1.

Here AW Artin group with Coxeter groupW

PW pure Artin group



Classical re�ection arrangements: de�ning hyperplanes

Let V = Cn with coordinates (x1, . . . , xn).
I Type An�1 (braid): xi � xj = 0 (1 6 i < j 6 n).

I Type Bn (hyperoctahedral): xi = 0 (1 6 i 6 n) and
xi ± xj = 0 (1 6 i < j 6 n).

I Type Dn: xi ± xj = 0 (1 6 i < j 6 n) (no coordinate hyperplanes
xi = 0).

I Dihedral I2(m): m lines through the origin in C2:

Pure vs. full Artin groups. For any �niteW with re�ecting hyperplanes
{Hs},

PW = ⇡1
�
V \

[
Hs
�
, AW = ⇡1

�
(V \

[
Hs)/W

�
,

Also exceptional arrangements: E6, E7, E8, F4, H3, H4, de�ned by explicit
hyperplane constructions.



Artin groups: general de�nition

I S �nite set of generators
I M = (ms,t)s,t2S a symmetric matrix of {0, 1, . . . ,1}

The Artin group corresponding to (S,M) is given by the presentation:

A =

D
S
��� stst . . .| {z }

ms,t

= tsts . . .| {z }
ms,t

, 8s, t 2 S, s, t 6= 1
E

encoded by the Coxeter graph with vertex set S and edges labeled by ms,t :

Convention: ms,t = 2: no edge, ms,t = 3: label omitted

Examples: braid group (An)

1 1

1
free group F3

-

Coxeter gp =
A/5(seS]

st = ts sts = +st
-
- -

5, 52 53 Su

0,525 = 525, 52
5, 53 = 535



Spherical Artin groups

An, (n > 1):

4Bn, (n > 2):

Dn, (n > 4):

E6:

E7:

E8:
4F4:

5H4: 5H3: mI2(m),
(m > 5,m 6= 1) :



A�ne Artin groups: Coxeter group has Zn of �nite index

eAn, (n > 2): 1eA1:

4eBn, (n > 4): 4eB3:

4 4eCn, (n > 3): 4 4eC2:

eDn, (n > 5): eD4:

eE6: eE7:

4eF4:
eE8: 6eG2:

r



Classical problems: Spherical vs A�ne
• word problem, torsion-free, center: Brieskorn–Saito’1972,
McCammond–Sulway’2017

• K(⇡, 1)-conjecture holds: Deligne’1972, Paolini–Salvetti’21

Problem: Description of Aut(G), Out(G): only known for a few
cases!

� eA1 = F2: Nielsen’1918: Out(A(eA1)) = GL(2,Z);
� An: Dyer–Grossman’1981;
� I2(m): Gilbert–Howie–Metaftsis–Raptis’2000, Crisp–Paris’2002;
� An, Bn, eAn, eCn: Charney–Crisp’2005;
� Dn (n = 4, n > 6): S.’21, Castel–Paris’2025+

That is all we know!
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Q: What do the following Artin groups have in common?

An:

4Bn:

4 4eCn:

Dn:

eAn:

A: They admit geometric embeddings into mapping class groups!

Geometric = standard generators map to Dehn twists or half-twists.
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Mapping class groups
Let S = Sg,b be a compact, connected, oriented surface of genus g with b > 0
boundary components, and let P ⇢ Int(S) be a �nite set of n punctures.
The mapping class group of (S, P) is:

Mod(S, @S, P) := ⇡0
�
Di�+

(S; @S, P)
�
,

where Di�+
(S; @S, P) is the group of orientation-preserving

di�eomorphisms that �x @S pointwise and permute P setwise. Isotopies are
taken rel @S [ P .

We mod out diffeomorphisms

-
isotopic to identity

Wat a conta ne



Artin relations in mapping class groups

Dehn twists: �

T�

Half-twists:
↵ H↵

• circles �, � / arcs ↵, � disjoint: T�T� = T�T� , H↵H� = H�H↵ (mst = 2)
• circles �, � intersect once / arcs ↵, � have common endpoint:

T�T�T� = T�T�T�, H↵H�H↵ = H�H↵H� (mst = 3)

• otherwise: hT� , T�i ' F2 ' hH↵,H�i (mst = 1)

Mixed relation (Labruére–Paris’01):

�
↵

T� H↵ T� H↵ = H↵ T� H↵ T� (mst = 4)

16
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(Almost) all known geometric embeddings:

An:

Bn:
eAn:

eCn:

�nite index in MCG(sphere)

Dn: ... ....

in�nite index in MCG

-oooo

-

- -o
P
b
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even
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Recent developments
New advances:

• description of homomorphisms of An into MCG’s, for n > 6 (Castel’16);
• description of homomorphisms from An to A2n, for n > 4
(Chen–Kordek–Margalit’19);

allowed obtaining the following new results:

I description of all endomorphisms of Dn, including automorphisms, for
n > 6 (Castel–Paris’25+);

I description of all endomorphisms of eAn, for n > 4 (Paris–S.’25);
I description of all endomorphisms of Bn, for n > 5 (Paris–S.’25);
I description of all endomorphisms of eCn, for n > 5 (Paris–S., in

preparation);
I R1 property for An, Bn, eAn, eCn, Dn (Calvez–S.’22, S.–Vaskou’24).



Endomorphisms of eAn:

Theorem (Paris–S.’25)
Let n > 4 and ' be an endomorphism of eAn. Then, up to conjugacy, ' is either

• cyclic, or
• an automorphism (description known before by Charney–Crisp’05):
(dihedral group of graph autos) ⇥ (global inversion)

• or non-injective and non-surjective:
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Endomorphisms of eAn:

Theorem (Paris–S.’25)
Let n > 4 and ' be an endomorphism of eAn. Then, up to conjugacy, ' is either
• cyclic, or
• an automorphism (description known before by Charney–Crisp’05):
(dihedral group of graph autos) ⇥ (global inversion)

• or non-injective and non-surjective:

An
&

=30



Bene�ts for mapping class groups:
In “Problems on Mapping Class Groups and Related Topics” (edited by
B. Farb, 2006), Joan Birman wrote:

Theorem (S.’20, based on Labruére–Paris’01)

(Pure) MCG

( )
' Artin(D4). D4 :

Corollary. MCG(g, b, n) is linear for

(g, b, n) = (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3)

(since Artin(D4) is linear by Digne’03),

and also for (g, b, n) = (0,m, n),m > 2, (1, 2, 0), (1, 1, 1), (1, 0, 2).



Bene�ts for mapping class groups:
In “Problems on Mapping Class Groups and Related Topics” (edited by
B. Farb, 2006), Joan Birman wrote:

Theorem (S.’20, based on Labruére–Paris’01)

(Pure) MCG

( )
' Artin(D4). D4 :

Corollary. MCG(g, b, n) is linear for

(g, b, n) = (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3)

(since Artin(D4) is linear by Digne’03),

and also for (g, b, n) = (0,m, n),m > 2, (1, 2, 0), (1, 1, 1), (1, 0, 2).



Bene�ts for mapping class groups:
In “Problems on Mapping Class Groups and Related Topics” (edited by
B. Farb, 2006), Joan Birman wrote:

Theorem (S.’20, based on Labruére–Paris’01)

(Pure) MCG

( )
' Artin(D4). D4 :

Corollary. MCG(g, b, n) is linear for

(g, b, n) = (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3)

(since Artin(D4) is linear by Digne’03),

and also for (g, b, n) = (0,m, n),m > 2, (1, 2, 0), (1, 1, 1), (1, 0, 2).



Bene�ts for mapping class groups:
In “Problems on Mapping Class Groups and Related Topics” (edited by
B. Farb, 2006), Joan Birman wrote:

Theorem (S.’20, based on Labruére–Paris’01)

(Pure) MCG

( )
' Artin(D4). D4 :

Corollary. MCG(g, b, n) is linear for

(g, b, n) = (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3)

(since Artin(D4) is linear by Digne’03),

and also for (g, b, n) = (0,m, n),m > 2, (1, 2, 0), (1, 1, 1), (1, 0, 2).



Bene�ts for mapping class groups:
In “Problems on Mapping Class Groups and Related Topics” (edited by
B. Farb, 2006), Joan Birman wrote:

Theorem (S.’20, based on Labruére–Paris’01)

(Pure) MCG

( )
' Artin(D4). D4 :

Corollary. MCG(g, b, n) is linear for

(g, b, n) = (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3)

(since Artin(D4) is linear by Digne’03),

and also for (g, b, n) = (0,m, n),m > 2, (1, 2, 0), (1, 1, 1), (1, 0, 2).



Other applications of geometric embeddings into MCG’s:
• Lee–Lee’10: uniqueness of roots up to conjugacy in Bn, eAn, eCn.
• Digne’12: existence of a Garside structure on eCn.
• Calvez–Cisneros de la Cruz’21: curve graphs for Bn, eAn, eCn.

• Commensurability (⇡) of spherical Artin groups: (i.e. are there
isomorphic �nite index subgroups?)

Theorem (Cumplido–Paris’22)
1. if two spherical Artin groups are commensurable, then their ranks are

equal and all indecomposable components are mutually commensurable
2. the only irreducible spherical Artin groups commensurable with An are:

An ⇡ Bn and A2 ⇡ I2(m), m > 3.

This takes care of in�nite series An, Bn, Dn, and leaves only six cases
undecided: (D4, F4), (D4,H4), (F4,H4), (D6, E6), (D7, E7), (D8, E8).

Theorem (S.’21) D4 6⇡ F4, D4 6⇡ H4.

There is some hope for resolving cases (D6, E6), (D7, E7), (D8, E8), but
(F4,H4)

is a really hard nut to crack!
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Which Artin groups can be realized by Dehn twists only?
Motivation: deformations of singularities: Arnold, Milnor, Brieskorn, . . .

Answer 1: The following CANNOT be realized:

I Labruére’97:

I Wajnryb’99: E6 E7 E8

Answer 2:
I Mortada’11: REALIZED (!) (but did not publish)

I Ry�el’23: classi�ed ALL realizations of
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Open Problem: Which Artin groups are realizable by Dehn twists?

Immediate bene�ts:
• word problem
• residual �niteness
• description of center

Take your favorite cubical graph:

There is no obvious obstruction for it to be realizable!
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no induced Eg :

-a
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