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1. Introduction

A polynomial differential system in R2 is a system of the form

x ′ =
dx
dt

= P1(x , y), y ′ =
dy
dt

= P2(x , y), (1)

where Pi ∈ R[x , y ] for i = 1,2 and t is the independent variable.
We denote by

X (x , y) = (P1(x , y),P2(x , y)) , (2)

the polynomial vector field associated to system (1).

We say that m = max{mi}, where mi is the degree of Pi ,
i = 1,2, is the degree of the polynomial differential system (1),
or of the polynomial vector field (2).
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1. Introduction: 16th Hilbert Problem

One of the most difficult objects to control in the qualitative
theory of ordinary differential equations in dimension two are
the limit cycles: maximum number and distribution.

This problem is related with the second part of the 16th Hilbert
Problem.

D. HILBERT, Mathematische Probleme, Lecture, Second
Internat. Congr. Math. Paris, Nachr. Ges. Wiss. Göttingen
Math. Phys. KL., 253–297 (1900). English transl., Bull.
Amer. Math. Soc., 8 (1902), 437–479.
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1. Introduction: 16th Hilbert Problem

Problem 1 (Second part of 16th Hilbert Problem)

Consider polynomial vector fields of degree m in the plane.

Prove (or disprove) that there exists a uniform upper bound,
depending on the degree m of the vector fields, for the number
of limit cycles.
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1. Introduction: 16th Hilbert Problem

Second part of 16th Hilbert Problem.
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1. Introduction: 16th Hilbert Problem

The following theorem is essential in the study of 16th Hilbert
Problem.

Theorem 1 (Écalle, Ilyashenko)

A polynomial vector field in the plane has a finite number of limit
cycles.

J. ÉCALLE, Introduction aux functions analysables et
preuve constructive de la conjecture de Dulac, Hermann,
Paris, 1992.

Y. ILYASHENKO, Finiteness theorems for limit cycles,
American Mathematical Society, Providence, RI, 1993.
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1. Introduction: 16th Hilbert Problem

Smale wrote the following comment.

Remark 1

“These two papers have yet to be thoroughly digested by the
mathematical community".

S. SMALE, Mathematical problems for the next century,
Math. Intelligencer, 20 (1998), 7–15.

By Theorem 1 we have the finiteness, but no bounds.
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1. Introduction: Quadratic vector fields

The simplest case m = 2: quadratic vector fields

In 1957, Petrovskii and Landis claimed that quadratic vector
fields have at most 3 limit cycles.

I.G. PETROVSKII, E.M. LANDIS, On the number of limit
cycles of the equation dy/dx = P(x , y)/Q(x , y), where P
and Q are polynomials, Mat. Sb. N.S., sc 43 (1957),
149–168 (Russian), and Amer. Math. Soc. Transl., 14
(1960), 181–200.

In 1959 a gap was found in the arguments of Petrovskii and
Landis.
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1. Introduction: Quadratic vector fields

Later, Chen and Wang in 1979 provided the first quadratic
vector field having 4 limit cycles.

L.S. CHEN, M.S. WANG, The relative position, and the
number, of limit cycles of a quadratic differential system,
Acta Math. Sinica, 22 (1979), 751–758.

Up to now 4 is the maximum number of limit cycles known for a
quadratic vector field.
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1. Introduction: Quadratic vector fields

Bamon proved in 1986 that any quadratic vector field has
finitely many limit cycles.

R. BAMON, Quadratic vector fields in the plane have a finite
number of limit cycles, Int. Hautes Études Sci. Publ. Math.,
64 (1986), 111–142.
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1. Introduction: Quadratic vector fields

It can be proved the following properties of quadratic vector
fields:

A closed orbit is convex;

There is a unique equilibrium point in the interior of a
closed orbit;

Two closed orbits have the same (resp. opposite)
orientation if their interiors have (resp. do not have)
common points.
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1. Introduction: Quadratic vector fields

This distribution of limit cycles is not possible.
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1. Introduction: Quadratic vector fields

So, the distribution of limit cycles of quadratic vector fields has
only one or two nests.

A quadratic vector field has an (n1,n2)–distribution of limit
cycles if it has n1 limit cycles in one nest and n2 limit cycles in
the other, where n1 and n2 are non–negative integers.

Zhang proved that in two nests case at least one nest contains
a unique limit cycle.

P. ZHANG, On the distribution and number of limit cycles for
quadratic systems with two foci, Qual. Theory Dyn. Syst., 3
(2002), 437–463.

Therefore, the (2,2)–distribution of limit cycles for a quadratic
vector field is impossible.
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1. Introduction: Quadratic vector fields

Some known distributions of limit cycles:

(1, 0)–distribution: x ′ = y + y2, y ′ = −x + y/2 − xy + 3y2/2.
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1. Introduction: Quadratic vector fields

(2, 0)–distribution: x′ = 1 + xy , y′ = a00 + a10x + a01y + a20x2 + a11xy + ay2,

with a = 3/2, a11 = 4/5, a20 = −15, a10 = 9175/1000, a01 = 2a + 1− a11 and

a00 + a10 − a01 + a20 − a11 + a02 = 0.
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1. Introduction: Quadratic vector fields

(3, 0)–distribution: x′ = 1 + xy , y′ = a20(x
2 − 1) + a10(x − 1) + a11(xy + 1) + a01(y + 1) + a(y2 − 1),

with a = 7/5, a11 = 8012/10000, a20 = −15, a01 = 2998/1000, x0 = −88/100 and

a10 = −a20(x0 + 1)− a01/x0 + a(x0 + 1)/x2
0 .
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1. Introduction: Quadratic vector fields

(1, 1)–distribution: x ′ = y + y2, y ′ = −x/2 + y/2 − xy + 13y2/10.
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1. Introduction: Quadratic vector fields

(2, 1)–distribution: x′ = 1 + xy , y′ = a00 + a10x + a01y + a20x2 + a11xy + ay2,

with a = 17/23, a11 = 221/115, a20 = −18, a10 = −54, a01 = 2a + 1− a11 and

a00 + a10 − a01 + a20 − a11 + a02 = 0.
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1. Introduction: Quadratic vector fields

(3, 1)–distribution: x′ = 1 + xy , y′ = a20(x
2 − 1) + a10(x − 1) + a11(xy + 1) + a01(y + 1) + a(y2 − 1),

with a = 18/23, a11 = 17313/10000, a20 = −40, a01 = 835/1000, x0 = −4 and

a10 = −a20(x0 + 1)− a01/x0 + a(x0 + 1)/x2
0 .
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1. Introduction: 16th Hilbert Problem

Finally, there is an article under evaluation providing an answer
to the 16th Hilbert Problem.

J. LLIBRE, P. PEDREGAL, Hilbert’s 16th Problem. When
differential systems meet variational principles, preprint,
2015.

The main theorem of this article is the following.
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1. Introduction: 16th Hilbert Problem
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2. Our results on quadrics of revolution

Now we study some results of the article
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2. Our results on quadrics of revolution

We study polynomial vector fields of arbitrary degree in R3 with
an invariant quadric of revolution.

We characterize all the possible configurations of invariant
parallels that these vector fields can exhibit.

Furthermore we analyze when these invariant parallels can be
limit cycles.
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2. Our results on quadrics of revolution

As usual we denote by K[x , y , z] the ring of the polynomials in
the variables x , y and z with coefficients in K = R or K = C. By
definition a polynomial differential system in R3 is a system
of the form

dx
dt

= P1(x , y , z),
dy
dt

= P2(x , y , z),
dz
dt

= P3(x , y , z), (3)

where Pi ∈ R[x , y , z] for i = 1,2,3 and t is the independent
variable.

We denote by

X (x , y , z) = (P1(x , y , z),P2(x , y , z),P3(x , y , z)) , (4)

the polynomial vector field associated to system (3).
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2. Our results on quadrics of revolution

We say that m = max{mi}, where mi is the degree of Pi ,
i = 1,2,3, is the degree of the polynomial differential system
(3), or of the polynomial vector field (4).

An invariant algebraic surface for system (3) or for the vector
field (4) is an algebraic surface M = f−1(0) with f ∈ R[x , y , z],
f 6= 0, such that for some polynomial K ∈ R[x , y , z] we have
X f = Kf .

The polynomial K is called the cofactor of the invariant
algebraic surface M = f−1(0). We remark that if the polynomial
system has degree m, then any cofactor has degree at most
m − 1.
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2. Our results on quadrics of revolution

The name invariant comes from the fact that if a solution curve
of system (3) has a point on the algebraic surface M = f−1(0),
then the whole solution curve is contained in M = f−1(0).
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2. Our results on quadrics of revolution

We consider polynomial vector fields X of degree m > 1 in R3

having a non–degenerate quadric of revolution

M2 = G−1(0)

as an invariant algebraic surface, that is

XG = KG,

where K is a polynomial of degree at most m − 1 and G defines
one of the non–degenerate quadric of revolution that after an
affine change of coordinates we can assume of the form:
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2. Our results on quadrics of revolution

Cone: G(x , y , z) = x2 + y2 − z2,

Cylinder: G(x , y , z) = x2 + y2 − 1,

One–sheet hyperboloid: G(x , y , z) = x2 + y2 − z2 − 1,

Two–sheet hyperboloid: G(x , y , z) = x2 + y2 − z2 + 1,

Paraboloid: G(x , y , z) = x2 + y2 − z,

Sphere: G(x , y , z) = x2 + y2 + z2 − 1.
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2. Our results on quadrics of revolution

On M2 we define parallels as the curves obtained by the
intersection of M2 with the planes orthogonal to the z–axis.

More precisely, the parallels are obtained intersecting the
planes z = k (for suitable k ∈ R) with M2.
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2. Our results on quadrics of revolution:
Paraboloid

Theorem 1

Let X be a polynomial vector field of degree m > 1 on the
paraboloid.

Assume that X has finitely many invariant parallels.

The following statements hold.

Luis Fernando Mello Polynomial vector fields in R3



2. Our results on quadrics of revolution:
Paraboloid

(a) The number of invariant parallels of X is at most m − 1.
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2. Our results on quadrics of revolution:
Paraboloid

(b) Fix 1 ≤ k ≤ m − 1 and consider the vector field

X (x , y , z) = (2y(x − 2k) + h(z),−2x(x − 2k),2x h(z)) , (5)

on the paraboloid where

h(z) = εzm−k−1
k∏

i=1

(z − i), ε > 0 small .

Then X has exactly k invariant parallels which are limit cycles.

These limit cycles are stable or unstable alternately.
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3. Outline of the proofs: Extactic polynomial

Let X be a polynomial vector field in R3 and let W be an
R–vector subspace of R[x , y , z] of finite dimension s > 1.

Let B = {f1, . . . , fs} be a basis of W .

The extactic polynomial of X associated to W is the
polynomial
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3. Outline of the proofs: Extactic polynomial

EW ,B(X ) = det



f1 f2 · · · fs

X f1 X f2 · · · X fs

...
... · · ·

...

X s−1f1 X s−1f2 · · · X s−1fs


,

where
X j fi = X j−1(X fi).
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3. Outline of the proofs: Extactic polynomial

It follows from the properties of the determinant and of the
derivation that the definition of extactic polynomial is
independent of the chosen basis B of W in the following sense:

If we take another basis B′ of W then

EW ,B′(X ) = αB,B′EW ,B(X ),

where
αB,B′ 6= 0

is the determinant of the matrix of the change of basis.

So, from now on, we use the symbol EW (X ) not mentioning the
specific basis of W .

Luis Fernando Mello Polynomial vector fields in R3



3. Outline of the proofs: Extactic polynomial

Proposition 1

Let X be a polynomial vector field in R3 and let W be a finite
R–vector subspace of R[x , y , z] with dim(W ) = s > 1.

Consider f ∈W, f 6= 0, and suppose that M = f−1(0) is an
algebraic invariant surface for the vector field X . Then f is a
factor of EW (X ).
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3. Outline of the proofs: Proof of Proposition 1

By assumption f ∈W . So consider f as the first element of a
basis B of W , that is B = {f , f2, . . . , fs}.

By assumption M = f−1(0) is an algebraic invariant surface for
the vector field X , that is there is a polynomial K such that

X f = K f .

Claim:

X j(f ) = Kj f ,

where

K1 = K , Kj = X (Kj−1) + Kj−1K , j ≥ 2.
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3. Outline of the proofs: Proof of Proposition 1

In fact,

X 1(f ) = X (f ) = K f = K1 f .

X 2(f ) = X (X f ) = X (K1 f ) = X (K1) f + K1X (f )

= X (K1) f + K1 K f = (X (K1) + K1 K ) f = K2 f .

By induction on j , if X j(f ) = Kj f then

X j+1(f ) = X (X j f ) = X (Kj f ) = X (Kj) f + KjX (f )

= X (Kj) f + Kj K f = (X (Kj) + Kj K ) f = Kj+1 f .
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3. Outline of the proofs: Proof of Proposition 1

From the definition of an extactic polynomial we have

EW (X ) = det



f f2 · · · fs

K f X f2 · · · X fs

...
... · · ·

...

Ks−1 f X s−1f2 · · · X s−1fs


.

So each entry of the first column of the above matrix is a
multiple of f . This implies that f is a factor of EW (X ) proving the
proposition.

�
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3. Outline of the proofs: Extactic polynomial

In order to study invariant parallels we must consider the
intersection of the planes z − z0 = 0 (for suitable z0) with M2

such that they are invariant by the flow of X .

Consider W spanned by B = {f1(x , y , z) = 1, f2(x , y , z) = z}.
Thus g(x , y , z) = z − z0 ∈W . By Proposition 1 it is necessary
that g be a factor of the extactic polynomial E{1,z}(X ), which
can be written as

E{1,z}(X ) = det

 1 z

X (1) X (z)

 = det

 1 z

0 P3

 = P3.
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3. Outline of the proofs: Extactic polynomial

Proposition 2

Let X be the polynomial vector field (4). Consider W spanned
by B = {f1(x , y , z) = 1, f2(x , y , z) = z}.

If g(x , y , z) = z − z0 is a factor of the extactic polynomial
E{1,z}(X ), then Pz0 = g−1(0) is an invariant plane of X .
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3. Outline of the proofs: Proof of Proposition 2

By assumption g(x , y , z) = z − z0 ∈W is a factor of the
extactic polynomial E{1,z}(X ), that is g is a factor of

E{1,z}(X ) = det

 1 z

X (1) X (z)

 = det

 1 z

0 P3

 = P3.

So there is a polynomial K such that

E{1,z}(X ) = P3 = K g.

From the definition of an invariant algebraic surface we have

Xg = (P1,P2,P3) · 5g = (P1,P2,P3) · (0,0,1) = P3 = K g,

that is, the above polynomial K is a cofactor of the invariant
algebraic surface Pz0 = g−1(0).

�
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3. Outline of the proofs: Extactic polynomial

Remark 2

We remark that Propositions 1 and 2 transform the study of
invariant parallels of a polynomial vector field X = (P1,P2,P3)
of degree m > 1 on M2 into the study of factors of the form

g(x , y , z) = z − z0

of the extactic polynomial

E{1,z}(X ) = P3.
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3. Outline of the proofs: Averaging Theorem

The Averaging Theorem (due to Lagrange in his studies in
Celestial Mechanics) gives a relation between the solutions of a
non autonomous differential system and the solutions of an
autonomous one, the averaged differential system. More
details can be found in the following book

F. VERHULST, Nonlinear Differential Equations and
Dynamical Systems, Universitext, Springer–Verlag, Berlin,
1990.
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3. Outline of the proofs: Averaging Theorem

Theorem 2 (Averaging Theorem of First Order)

Consider the system

u̇(t) =
du(t)

dt
= εF (t ,u(t)) + ε2R(t ,u(t), ε). (6)

Assume that the functions

F , R, DuF , D2
uF , DuR

are continuous and bounded by a constant M (independent of
ε) in [0,∞)× D ⊂ R× Rn with −ε0 < ε < ε0.

Moreover, suppose that F and R are T–periodic in t, with T
independent of ε.
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3. Outline of the proofs: Averaging Theorem

(a) If a ∈ D is a zero of the averaged function

f (u) =
1
T

∫ T

0
F (s,u)ds, (7)

such that det(Duf (a)) 6= 0 then, for |ε| > 0 sufficiently small,
there exists a T –periodic solution uε(t) of system (6) such that
uε(0)→ a when ε→ 0.
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3. Outline of the proofs: Averaging Theorem

(b) If the real part of all the eigenvalues of Duf (a) are negative,
then the periodic solution uε(t) is stable, if the real part of some
eigenvalue of Duf (a) is positive then the periodic solution is
unstable.
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3. Outline of the proofs: Paraboloid

The following theorem gives a normal form for polynomial
vector fields on the paraboloid.

Theorem 3

If M2 is a paraboloid, then system (3) can be written as

x ′ = G(x , y , z)A(x , y , z) + E(x , y , z) + 2yF (x , y , z),

y ′ = G(x , y , z)B(x , y , z)− D(x , y , z)− 2xF (x , y , z),

z ′ = G(x , y , z)C(x , y , z)− 2yD(x , y , z) + 2xE(x , y , z),

(8)

with

G(x , y , z) = x2 + y2 − z,

A, B, C, D, E and F are arbitrary polynomials of R[x , y , z].

Luis Fernando Mello Polynomial vector fields in R3



3. Outline of the proofs: Paraboloid (a)

In order to determine the invariant parallels we must consider
the intersection of the planes z = k , k > 0 with M2.

By Proposition 1 it is necessary that g(x , y , z) = z − k be a
factor of the extactic polynomial E{1,z}(X ) = P3, where

P3(x , y , z) = −2yD(x , y , z) + 2xE(x , y , z).

We have at most m − 1 factors of the form z − k .

This proves statement (a) of the theorem.
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3. Outline of the proofs: Paraboloid (b)

Consider the polynomial vector field (5)

X (x , y , z) = (2y(x − 2k) + h(z),−2x(x − 2k),2x h(z)) ,

where

h(z) = εzm−k−1
k∏

i=1

(z − i), ε > 0 small .
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3. Outline of the proofs: Paraboloid (b)

Thus

E{1,z}(X )(x , y , z) = P3(x , y , z) = 2xh(z) = 2εxzm−k−1
k∏

i=1

(z−i).

This implies that, for 1 ≤ k ≤ m − 1 fixed, vector field (5) has
exactly k invariant parallels given by z = i , i = 1, . . . , k .

It is easy to see that this vector field has no equilibria on the
invariant parallels.

In order to complete the proof we need to show that these
invariant parallels are limit cycles.
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3. Outline of the proofs: Paraboloid (b)

Note that the paraboloid x2 + y2 − z = 0 can be written in the
explicit form z = x2 + y2.

In the coordinates (x , y) vector field (5) has the form

X ∗(x , y) =
(

2y(x − 2k) + h∗(x2 + y2),−2x(x − 2k)
)
,

with

h∗(x2 + y2) = ε(x2 + y2)m−k−1
k∏

i=1

(x2 + y2 − i), ε > 0 small.
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3. Outline of the proofs: Paraboloid (b)

In polar coordinates x = r cos θ and y = r sin θ the above vector
field is equivalent to

dr
dθ

=
εr2(m−k−1)∏k

i=1(r
2 − i) cos θ

−2(r cos θ − 2k)− εr2(m−k−1)−1
∏k

i=1(r2 − i) sin θ
.

Expanding dr/dθ in Taylor series with respect to ε at ε = 0 we
have

dr
dθ

=
r2(m−k−1)−1∏k

i=1(r
2 − i) cos θ

−2(r cos θ − 2k)
ε+ O(ε2). (9)
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3. Outline of the proofs: Paraboloid (b)

Equation (9) satisfies the hypotheses of the Averaging
Theorem.

The averaged function (7) can be written as
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3. Outline of the proofs: Paraboloid (b)

f (r) =
1

2π

∫ 2π

0

(
r2(m−k−1)−1∏k

i=1(r
2 − i) cos θ

−2(r cos θ − 2k)

)
dθ

=− 1
4π

(
r2(m−k−1)−1

k∏
i=1

(r2 − i)

)∫ 2π

0

cos θ
(r cos θ − 2k)

dθ

=− 1
4π

(
r2(m−k−1)−1

k∏
i=1

(r2 − i)

)
g(r),

where

g(r) = 2π

(√
4k2 − r2 − 2k
r
√

4k2 − r2

)
.
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3. Outline of the proofs: Paraboloid (b)

It is easy to check that g(r) < 0 for 0 < r < k .

Therefore, for 0 < r < k , the simple zeros of f are given by
r =
√

i , for i = 1, . . . , k , which correspond to the k limit cycles
of X ∗.

The stability of each limit cycle is easily determined by the sign
of the derivative of f at each simple zero.

In short, Theorem 1 is proved.

�
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3. Outline of the proofs: Example

Take m = 3 and k = 2. The graph of the averaged function (7)
is given by
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3. Outline of the proofs: Example

Take m = 3 and k = 2. The phase portrait of the vector field (5)
on the paraboloid is depicted in the next figure.
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3. Other examples: Cone

Take m = 3 and k = 2. The phase portrait on the cone.
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3. Other examples: Cylinder

Take m = 3 and k = 3. The phase portrait on the cylinder.
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3. Other examples: One–sheet hyperboloid

Take m = 3 and k = 2. The phase portrait on the one–sheet
hyperboloid.
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3. Other examples: Two–sheet hyperboloid

Take m = 3 and k = 2. The phase portrait on the two–sheet
hyperboloid.
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3. Other examples: Sphere

Take m = 4 and k = 3. The phase portrait on the sphere.
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Plan of the talk:

1 Introduction and generalities;

2 Our results on quadrics of revolution;

3 Outline of the proofs;

4 Open problem.
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4. Open problem: Liénard systems

Consider the planar polynomial system (Liénard system)

x ′ = y − f (x), y ′ = −x , (10)

where f : R −→ R is a real polynomial function of degree n.

Here the symbol [x ] will denote the integer part function of x .
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4. Open problem: Liénard systems

Lins Neto, de Melo and Pugh stated the following conjecture.

A. LINS NETO, W. DE MELO, C.C. PUGH, On Liénard
equations, in: Proc. Symp. Geom. and topol, in: Lectures
Notes in Math., vol. 597, Springer–Verlag, 1977, 335–357.

Conjecture 1

The Liénard system (10) has at most [(n − 1)/2] limit cycles.
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4. Open problem: Liénard systems

Table : Values of [(n − 1)/2] for 1 ≤ n ≤ 7.

n [(n − 1)/2]
1 0
2 0
3 1
4 1
5 2
6 2
7 3
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4. Open problem: Liénard systems

Lins Neto, de Melo and Pugh proved that Conjecture 1 has an
affirmative answer for the cases n = 1, n = 2 and n = 3.

A. LINS NETO, W. DE MELO, C.C. PUGH, On Liénard
equations, in: Proc. Symp. Geom. and topol, in: Lectures
Notes in Math., vol. 597, Springer–Verlag, 1977, 335–357.
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4. Open problem: Liénard systems

Dumortier, Panazzolo and Roussarie shown that the conjecture
is not true for n ≥ 7 providing one additional limit cycle to the
ones predicted by the conjecture.

F. DUMORTIER, D. PANAZZOLO, R. ROUSSARIE, More limit
cycles than expected in Liénard equations, Proc. Amer.
Math. Soc., 135 (2007), 1895–1904.
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4. Open problem: Liénard systems

In 2011 De Maesschalck and Dumortier proved that the
conjecture is not true for n ≥ 6 providing two additional limit
cycles to the ones predicted by the conjecture.

P. DE MAESSCHALCK, F. DUMORTIER, Classical Liénard
equation of degree n ≥ 6 can have [(n − 1)/2] + 2 limit
cycles, J. Differential Equations, 250 (2011), 2162–2176.
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4. Open problem: Liénard systems

In 2012, thirty five years after the statement of the conjecture, it
was proved by Li and Llibre that the conjecture holds for n = 4.

C. LI, J. LLIBRE, Uniqueness of limit cycle for Liénard
equations of degree four, J. Differential Equations, 252
(2012), 3142–3162.

Luis Fernando Mello Polynomial vector fields in R3



4. Open problem: Liénard systems

Based on the previous comments we have the following
problem.

Problem 2
Prove (or disprove) that Liénard systems (10) of degree 5 have
at most 2 limit cycles.
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THE END.

THANK YOU VERY MUCH.
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