Volume Renormalization for Singular Yamabe Metrics in Higher Codimension

Sri Rama Chandra Kushtagi (with Stephen McKeown)

UT Dallas

November 21, 2024 GaGA at Texas Christian University

Observation Singular Yamabe Metrics

CCE Metrics

Suppose M^{n+1} is a compact manifold with boundary $\partial M = \Sigma^n$.

A **defining function** for Σ in M is a smooth function r on M such that

$$\begin{array}{ll} r>0 & \mathrm{in} & \mathring{M}, \\ r=0 & \mathrm{on} & \Sigma, \\ dr\neq 0 & \mathrm{on} & \Sigma. \end{array}$$

A Riemannian metric g^+ on \mathring{M} is called **conformally compact** if (M, r^2g^+) is a compact Riemannian manifold with boundary.

Let
$$g = r^2 g^+$$
 and $g|_{\Sigma} = h$.

The conformally compact manifold (\mathring{M}, g^+) induces a well defined conformal structure [h] on Σ .

 $(\Sigma, [h])$ is called the **conformal infinity** of the conformally compact manifold (\mathring{M}, g^+) .

A conformally compact metric with

$$\operatorname{Ric}(g^+) = -ng^+$$

is called a conformally compact Einstein (CCE) metric.

CCE Metrics

Theorem (Graham-Lee '91, Graham '00)

Let (\mathring{M}, g^+) be a CCE manifold with conformal infinity $(\Sigma, [h])$. Then • For any $h \in [h]$, there is a unique defining function r such that

$$|dr|_g = 1$$

in a neighborhood $[0, \delta) \times \Sigma$ of Σ , and $r^2g^+|_{\Sigma} = h$.

) With this defining function, g^+ can be written as

$$g^+=\frac{1}{r^2}(dr^2+h_r),$$

where h is a 1-parameter family of metrics with parameter r. Also, h expands in r as

$$h_r = h + r^2 h_2 + \cdots$$
 (even powers) $\cdots r^{n-1} h_{n-1} r^n h_n + o(r^n)$.

CCE Metrics

The volume of (\mathring{M}, g^+) is infinite. One considers the volume of the region $\{r > \epsilon\}$ in M to find:

Theorem (Henningson-Skenderis '98, Graham '00)

• The volume of $\{r > \epsilon\}$ in g^+ expands as

$$\operatorname{Vol}_{g^+}\{r > \epsilon\} = c_0 \epsilon^{-n} + c_1 \epsilon^{-n+1} + \dots + c_{n-1} \epsilon^{-1} + \mathcal{E} \log\left(\frac{1}{\epsilon}\right) + V + o(1),$$

where $c_j = 0$ for each odd j.

If n is odd, E is zero and V is independent of h ∈ [h]; and if n is even,
 E is independent of h ∈ [h].

We call V the **renormalized volume** of (M, g^+) , and call \mathcal{E} the **energy** of Σ in M.

Let (M^{n+1}, g) be a compact Riemannian manifold with boundary $\partial M = \Sigma^n$. Write $g|_{\Sigma} = h$.

A complete metric g^+ on \mathring{M} is called *the* **boundary singular Yamabe** (∂ SY) metric for (M, g) if there is a function u with

$$u > 0$$
 on \check{M} ,
 $u = 0$ on Σ ,

such that $g^+ = u^{-2}g$ has

$$R_{g^+} = -n(n+1).$$

The scalar curvature condition can be seen as a PDE in *u*:

$$L[u] := 1 - |du|_g^2 + \frac{2}{n+1}u\Delta_g u + \frac{1}{n(n+1)}u^2R_g = 0.$$

Theorem (Aviles-McOwen '88)

The problem

$$L[u] = 0 \text{ on } \mathring{M}, \qquad u|_{\Sigma} = 0$$

has a unique solution.

Under the identification of a neighborhood of Σ in M with $[0,\delta)\times\Sigma,$ g takes the form

$$g = dr^2 + h_r$$

where r is the distance to Σ w.r.t. g, and h_r is a 1-parameter family of metrics on Σ with parameter r such that $h_0 = h$.

The solution u expands in r as

$$u \sim r + u_2 r^2 + \dots + u_{n+1} r^{n+1} + \mathcal{L} r^{n+2} \log r + u_{n+2} r^{n+2} o(r^{n+2}),$$

where \mathcal{L} and u_m for m < n+2 are locally formally determined, and u_{n+2} is formally undetermined.

Chandra Kushtagi (UTD)

The volume form for (\mathring{M}, g^+) is

$$dV_{g^+} = u^{-n-1}dV_g.$$

Again, the volume is infinite.

The volume of the region $\{r > \epsilon\}$ is

$$\operatorname{Vol}_{g^+}\{r > \epsilon\} = c_{-n}\epsilon^{-n} + c_{-n+1}\epsilon^{-n+1} + \dots + c_{-1}\epsilon^{-1} + \mathcal{E}\log(\frac{1}{\epsilon}) + V + o(1).$$

Theorem (Graham '17)

 ${\mathcal E}$ is independent of choice of $g \in [g]$.

Generically, V is not a conformal invariant in this setting.

Chandra Kushtagi (UTD)

Let (M^{n+k}, g) be a closed Riemannian manifold. Suppose Σ^n is an embedded submanifold of M. Write $g|_{\Sigma} = h$.

A complete metric g^+ on $M \setminus \Sigma$ is called a **singular Yamabe** (SY) metric for (M, Σ, g) if there is a function u with

u > 0 on $M \setminus \Sigma$, u = 0 on Σ ,

such that $g^+ = u^{-2}g$ has

$$R_{g^+} = -(n-k+2)(n+k-1).$$

Writing the scalar curvature condition as

$$2L[u] = (n+2-k) - (n+k)|du|_g^2 + 2u\Delta_g u + \frac{1}{n+k-1}R_g u^2 = 0,$$

we have that

Theorem (Aviles-McOwen '88)

The problem

$$\begin{aligned} L[u] &= 0 \quad on \ M \backslash \Sigma, \\ u|_{\Sigma} &= 0 \end{aligned}$$

has a unique solution if and only if k < n + 2.

[Mazzeo '91, Mazzeo-Pacard '96] When $k \ge n + 2$, a solution need not exist, need not be unique if it does exist, and need not be polyhomogeneous.

Chandra Kushtagi (UTD)

Assume k < n + 2 throughout. Let t be the g-distance to Σ .

Theorem (Mazzeo '91)

The solution u to the singular Yamabe problem expands in t as

$$u \sim t + u_2 t^2 + \cdots + u_{n+1} t^{n+1} + \mathcal{L} t^{n+2} \log t + u_{n+2} t^{n+2} + o(t^{n+2}),$$

where the function \mathcal{L} , and each u_{ℓ} for $\ell < n + 2$, is a smooth function on $\mathbb{S}^{k-1} \times \Sigma$ formally determined by g. u_{n+2} is formally undetermined.

Theorem (K-McKeown)

The solution to the singular Yamabe problem u of the form $u = t\bar{v} + O(t^{n+2}\log t)$, with $\bar{v}|_{\Sigma} = 1$, and $\bar{v} \in C^{\infty}(M)$.

We may identify a neighborhood of Σ in M with $[0, \delta) \times \mathbb{S}^{k-1} \times \Sigma$. Any point q in this neighborhood may be written as (t, ω, p) . For $p \in \Sigma$, define

$$\mathcal{Y}_{j}(p) = egin{cases} \mathcal{H}_{0} \oplus \mathcal{H}_{2} \oplus \cdots \oplus \mathcal{H}_{j} & j ext{ even}, \ \mathcal{H}_{1} \oplus \mathcal{H}_{3} \oplus \cdots \oplus \mathcal{H}_{j} & j ext{ odd}, \end{cases}$$

where \mathcal{H}_j is the space of eigenfunctions of \mathbb{S}^{k-1} corresponding to the eigenvalue -j(j+k-2).

Any smooth function f on M in a neighborhood of Σ can be written as $f(t, \omega, p)$ on $[0, \delta)_t \times \mathbb{S}^{k-1} \times \Sigma^n$.

In these coordinates, any smooth f expands in powers of t locally as

$$f = f_0 + tf_1 + \cdots + t^\ell f_\ell + \cdots$$

with f_{ℓ} smooth on $\mathbb{S}^{k-1} \times \Sigma$, and $f_{\ell}(-, p) \in \mathcal{Y}_{\ell}(p)$ for each ℓ .

When ℓ is odd, f_{ℓ} integrates to zero over \mathbb{S}^{k-1} .

Chandra Kushtagi (UTD)

For a smooth function f written as

$$f=f_0+tf_1+\cdots+t^\ell f_\ell+\cdots,$$

we may think of the coefficients of odd powers of t as odd functions on the (k-1)-sphere and the coefficients of even powers of t as even functions on the (k-1)-sphere under the antipodal action.

In particular, at each $p \in \Sigma$, the coefficient of t^{ℓ} in the expansion of the solution to the singular Yamabe problem u satisfies

$$u_\ell(-,p) \in \mathcal{Y}_{\ell-1}(p) \quad ext{for } \ell < n+2.$$

Also, $\mathcal{L}(-,p) \in \mathcal{Y}_1(p)$.

With

$$u \sim t + u_2 t^2 + \dots + u_{n+1} t^{n+1} + \mathcal{L} t^{n+2} \log t + u_{n+2} t^{n+2} + o(t^{n+2}),$$

the volume form of $g^+ = u^{-2}g$ has the form

$$dV_{g^+} = \vartheta dt dV_h dV_{\mathring{b}},$$

where

$$\vartheta = t^{-n-1} \left(\vartheta_0 + \vartheta_1 t + \cdots + \vartheta_n t^n + o(t^n) \right)$$

is such that for each $p \in \Sigma$, $\vartheta_{\ell} \in \mathcal{Y}_{\ell}(p)$.

So, ϑ_{ℓ} for odd ℓ all integrate to zero over \mathbb{S}^{k-1} .

The volume of $(M \setminus \Sigma, g^+)$ is infinite. Considering the region $\{t > \epsilon\}$, we have

Theorem (K-McKeown)

The volume of the region $\{t > \epsilon\}$ expands as

$$\operatorname{Vol}_{g^+}\{t > \epsilon\} = c_0 \epsilon^{-n} + c_1 \epsilon^{-n+1} + \dots + c_{n-1} \epsilon^{-1} + \mathcal{E}_{n,k} \log\left(\frac{1}{\epsilon}\right) + V_{n,k} + o(1),$$

where $c_j = 0$ for each odd j. If n is odd, $\mathcal{E}_{n,k}$ is zero and $V_{n,k}$ is independent of $g \in [g]$. If n is even, $\mathcal{E}_{n,k}$ is independent of $g \in [g]$.

 $\mathcal{E}_{n,k}$ is a conformal invariant in terms of local Riemannian invariants. $V_{n,k}$ is an absolute conformal invariant.

Observe the reintroduction of parity to the invariance!

Examples

For n = 1 and k = 2, if $M = \mathbb{S}^3$, $V_{1,2}$ is a conformal invariant associated with knot embeddings.

Suppose $(M,g) = (\mathbb{S}^{n+k}, \mathring{g})$, and let $\Sigma = \mathbb{S}^n$ be an equatorial sphere.

We have

$$\mathcal{E}_{n,k} = (-1)^{\frac{n}{2}} \frac{4\pi^{\frac{n+k}{2}}}{\left(\frac{n}{2}\right)! \Gamma\left(\frac{k}{2}\right)} \text{for } n \text{ even},$$
$$V_{n,k} = (-1)^{\frac{n+1}{2}} \frac{2\pi^{1+\frac{n+k}{2}}}{\Gamma\left(\frac{n+2}{2}\right) \Gamma\left(\frac{k}{2}\right)} \text{for } n \text{ odd}.$$

In particular, $\mathcal{E}_{2,2} = -4\pi^2$ and $V_{1,2} = -4\pi^2$. The latter is the renormalized volume associated with the equatorial unknot in \mathbb{S}^3 .

Examples

Let (M^{2+k}, g) be a closed Riemannian manifold with $1 \le k \le 3$. Suppose Σ^2 is a closed surface embedded in M.

We have

$$\mathcal{E}_{2,k} = \frac{\operatorname{Vol}_{\mathring{b}}(\mathbb{S}^{k-1})}{8(4-k)} \int_{\Sigma} \left(k(|\mathfrak{H}|^2 + 4\operatorname{tr}_h(P|_{T\Sigma})) + 4|\mathring{\mathfrak{L}}|^2 - 8R_h \right) dV_h.$$

where

$$\begin{split} h &= g|_{T\Sigma}, \\ \mathring{b} \text{ is the standard metric on } \mathbb{S}^{k-1}, \\ P \text{ is the Schouten tensor,} \\ \mathfrak{L} \text{ is the second fundamental form of } \Sigma \text{ in } M, \text{ and} \end{split}$$

 \mathfrak{H} is its mean curvature.

When k = 1, this is

$$\mathcal{E}_{2,1} = \frac{1}{2} \int_{\Sigma} \left(|\mathring{\mathfrak{L}}|^2 - R_h \right) dV_h$$

Variational Formulae

Recall that

$$u \sim t + u_2 t^2 + \cdots + u_{n+1} t^{n+1} + \mathcal{L} t^{n+2} \log t + u_{n+2} t^{n+2} + o(t^{n+2}).$$

The *log*-coefficient \mathcal{L} in u is the restriction to the unit normal bundle of a *linear* function on the entire normal bundle, i.e., of a one-form. Also, \mathcal{L} is a conformal invariant of weight -n.

The formally undetermined term u_{n+2} is *not* the restriction to the normal bundle of a linear function.

Still, when *n* is odd, it has a conformally invariant linear *part* (not locally determined), which thus determines a conformally invariant one-form of weight -n on $N\Sigma$:

$$(u_{n+2})_{p}(X) = rac{k}{\operatorname{Vol}_{\mathring{b}}(\mathbb{S}^{k-1})} \int_{SN_{p}\Sigma} u_{n+2}(Y) \langle X, Y \rangle dV_{\mathring{b}}(Y),$$

where $SN_p\Sigma$ is the unit normal sphere at $p \in \Sigma$.

Theorem (K-McKeown)

If n is odd and k > 1, then $\mathcal{L} = 0$.

Let $\mathcal{F} : (-\delta, \delta) \times \Sigma \hookrightarrow M$ be a smooth variation of Σ with $\mathcal{F}(0, \cdot) = \mathrm{id}_{\Sigma}$. Suppose $X = \frac{d}{ds}\mathcal{F}(s, \cdot)|_{s=0} \in \Gamma(\Sigma, N\Sigma)$ is its variation field. For each s, let $\Sigma_s = \mathcal{F}(s, \Sigma)$, and let $\mathcal{E}_{n,k}(s)$ and $V_{n,k}(s)$ be the energy and volume corresponding to (M, Σ_s) .

If n is even, then
$$\frac{d}{ds}\Big|_{s=0}\mathcal{E}_{n,k}(s) = C_{n,k}\int_{\Sigma}\mathcal{L}(X)dV_h.$$

If n is odd, then $\frac{d}{ds}\Big|_{s=0}V_{n,k}(s) = C_{n,k}\int_{\Sigma}u_{n+2}(X)dV_h.$

Here $C_{n,k} = (-1)^n \frac{(n+k)(n^2+n+2k-4)}{k(n-k+2)} \operatorname{Vol}_{\mathring{b}}(\mathbb{S}^{k-1}).$

Chandra Kushtagi (UTD)

For $(M,g) = (\mathbb{S}^{n+k}, \mathring{g})$, the equatorial spheres $\Sigma = \mathbb{S}^n$ are critical.

As mentioned, when $k \ge n + 2$, a solution need not exist, need not be unique if it does exist, and need not be polyhomogeneous.

We may still construct *formal* solutions to the singular Yamabe problem, with desired properties that allow us to run the renormalization process beyond k < n + 2.

For each n, there are finitely many exceptional codimensions k for which this process does not yield ideal (but still interesting) results. Call this set S_n .

All the mentioned results of [K-McKeown] still hold for $k \notin S_n$.

The results pertaining to $\mathcal{E}_{n,k}$ still hold geometric meaning, as it is an integral of Riemannian invariants.

The results about $V_{n,k}$ for $k \ge n+2$ do not, since $V_{n,k}$ is generally not a canonical quantity anymore.

Chandra Kushtagi (UTD)

Thank You.

Set

$$P_n(p) = n + 2 + 2np - 4p^2$$
 and
 $Q_n(p) = 2n + 1 + 2(n-2)p - 4p^2$.

If *n* is even, define

$$E_n = \left\{ P_n(p) : p = 0, \cdots, \left\lfloor \frac{n}{4} \right\rfloor \right\}$$
$$O_n = \left\{ Q_n(p) : p = 0, \cdots, \left\lfloor \frac{n}{4} \right\rfloor \right\}.$$

If *n* is odd, define

$$E_n = \left\{ P_n(p) : p = 1, \cdots, \left\lfloor \frac{n}{2} \right\rfloor \right\}$$
$$O_n = E_n \cup \{n+2\}.$$

Let S_n denote the set $E_n \cup O_n$.

For $k \notin S_n$, the previous results for $\mathcal{E}_{n,k}$ and $V_{n,k}$ hold as they are. Assume $k \in S_n$.

Theorem (K-McKeown)

If $k \in O_n$, then there exists u with the expansion

$$u \sim t + u_2 t^2 + \dots + u_{n+1} t^{n+1} + \mathcal{L} t^{n+2} \log t + u_{n+2} t^{n+2} + o(t^{n+2})$$

satisfying $R_{u^{-2}g} = -(n+2-k)(n+k-1) + O(t^{n+1})$. This u is unique given the additional constraint that, for each positive root ν to $Q_n(\nu) = k$, the coefficient $u_{\nu+1}$ integrates to zero on each fiber of the normal sphere bundle to Σ ; this is equivalent to requiring that $\frac{u}{t}$ be smooth on M, and is thus a conformally invariant condition.

The previous results for $\mathcal{E}_{n,k}$ and $V_{n,k}$ thus hold for $k \in O_n$ too.

Theorem (K-McKeown)

Suppose that $k \in E_n$. Let ν be the smallest positive root to $P_n(\nu) = k$.

In either case, A is a pointwise conformal invariant of weight $-\nu$.