
LOCAL CLASS GROUPS

SCOTT NOLLET

All rings considered here are commutative with identity 1.

1. Local rings and localization

Definition 1.1. A ring R is local if it has a unique maximal ideal m, emphasized by the
notation (R,m). If p ⊂ R is a prime ideal, then S = R− p is a multiplicatively closed set
and we may form Rp = S−1R = {a

s
: a ∈ A, s ∈ S} addition and multiplication making

sense because we can find common denominators. This process is called localization at p
because pRp is the unique maximal ideal in Rp.

Example 1.2. (a) Any field k is a local ring, since the only proper ideal (0) is maximal.

(b) If A is an integral domain, then S = A − {0} is multiplicatively closed (A has no
zero-divisors) and S−1A = K(A) is the standard construction of the fraction field of A.

(c) The integers Z do not form a local ring, but for any prime ideal p we find a local

ring in Zp = {f
g

: f, g ∈ Z, g 6∈ p}.

(d) C[x] is not local, but the ideal (x− 2) ⊂ C[x] is maximal so

C[x](x−2) = { f(x)

g(x))
: f(x), g(x) ∈ C[x], g(2) 6= 0}

is a local ring with maximal ideal generated by (x− 2).

Example 1.3. The term local comes from geometry. Let p be a point on a complex
manifold M with open neighborhood U . One can form the ring of functions

OM(U) = {f : U → C : f is holomorphic on U}

If U is sufficiently small, then mp = {f : f(p) = 0} ⊂ OM(U) is a maximal ideal. The
ring of germs of holomorphic functions at p is

OM,p = lim
←−
p∈U

OM(U)

formed by equivalence classes of pairs (U, f) as above, where (U, f) = (V, g) if f = g on
U ∩ V . The ring OM,p is a local with maximal ideal mp being formed by the functions f
which vanish at p. For small neighborhoods U , we have a natural inclusion OM(U)mp ⊂
OM,p which is not onto because one can find a sequence of holomorphic functions with
radius of convergence tending to zero.
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Example 1.4. If X ⊂ Cn is a complex algebraic variety defined by ideal I ⊂ C[x1, . . . , xn]
and U ⊂ X is a Zariski open neighborhood of p ∈ X, one can similarly consider the ring

OX(U) = {f : U → C : f is locally a rational function}

of regular functions on U . For the open set U = X, OX(X) ∼= A(X) = C[x1, . . . xn]/I
is the affine coordinate ring of X. Again we can form a ring of germs of functions at p
by taking the inverse limit OX,p = lim

←−
OX(U) and due to the polynomial nature of the

functions we have an isomorphism

OX,p
∼= OX(X)mp

∼= (C[x1, . . . , xn]/I)mp

showing that the ring of germs of polynomial functions on X is the localization of the
ring of polynomial functions on X. This explains the language in the definition.

Remark 1.5. The local rings in the last two examples give quite different global infor-
mation. The local ring OM,p on the complex manifold M tells only dimM since it is
determined by the holorphic functions on a disk. The local ring OX,p on the algebraic
variety X defined by a prime ideal I actually determines the birational equivalence class
of X, since K(X) = K(C[x1, . . . , xn]/I) = K(OX,p) can be recovered (the local ring is
obtained by inverting polynomials outside mp and the function field is obtained by in-
verting all non-zero polynomials). The birational equivalence class of an algebraic variety
X is entirely determined by its function field K(X) as a C-algebra and dimX is the
transcendence degree of K(X) over C.

2. Power series rings and completion

Definition 2.1. The completion of a local ring (R,m) is the inverse limit R̂ = lim
←

R/mn

formed by sequences {an} with an ∈ R/mn such that an is the restriction of an+1 (the

sequence is coherent). The ring R̂ is also a local ring with maximal ideal m̂ and there

is a natural (flat) homomorphism (R,m) → (R̂, m̂) of local rings sending a ∈ R to the
constant sequence an = a. The ring R is complete if this map is an isomorphism.

Example 2.2. Let R = C[x1, . . . xn] and complete at the maximal ideal m = (x1, . . . , xn).
Then R/m ∼= C and in general R/mn appears as polynomials truncated at degree n, giving
the inverse system

C[x1, . . . , xn]/(x1, . . . , xn)← C[x1, . . . , xn]/(x1, . . . , xn)2 ← C[x1, . . . , xn]/(x1, . . . , xn)3 ←

from which one sees that the coherent sequences correspond to power series, built up one

term at a time, thus R̂ ∼= C[[x1, . . . xn]].

Definition 2.3. Local rings (A,m) and (B, n) are analytically isomorphic if Â ∼= B̂.

Example 2.4. Let x ∈ X be a smooth point on a complex algebraic variety of dimension
n. Then x is a smooth point of X if the local ring (OX,x,mx) is a regular local

ring, meaning that dimC m/m2 = n. In this case ÔX,x
∼= C[[x1, . . . , xn]], so analytic

isomorphism only determines dimX, much like the situation of Example 1.3 above for
germs of holomorphic functions on a complex manifold. From this we see that analytic
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isomorphism can only be useful in studying singularities of algebraic varieties. Considering
the local ring of germs of holomorphic functions at x as well we have

OX,x ⊂ OHol
X,x ⊂ ÔX,x

Because the germs of holomorphic functions are locally given as power series with positive
radius of convergence.

Example 2.5. Consider the nodal cubic curve X ⊂ C2 given by equation y2 = x2 − x3.
Then X is singular only at the origin. In variables X = y − x, Y = y + x the equation
becomes XY + f3(X, Y ) where f3(X, Y ) = (Y −X)3/8 is a homogeneous cubic polyno-
mial and the analytic isomorphism class is given by completing the ring C[X, Y ]/(XY +
f3(X, Y )) to obtain C[[X, Y ]]/(XY + f3(X, Y )).

Working in the power series ring we can make an analytic change of coordinates to
obtain the ring C[[x′, y′]]/(x′y′). Inductively set (X0, Y0) = (X, Y ). Since f3(X, Y ) is a
homogeneous cubic in X, Y , we can find quadratic h1, g1 so that f3(X, Y ) = Xh1 + Y g1.
Setting X1 = X0 + g1, Y1 = Y + 0 + h1 we have X1Y1 = X0Y0 + f3(X0, Y0) + h1g1 so that

X0Y0 + f3(X0, Y0) = X1Y1 + f4(X1, Y1).

Continuing in this way, we find a sequence (X0, Y0), (X1, Y1), . . . which converges in
C[X, Y ] to (x′, y′) when the equation takes the form x′y′ = 0. Here the completion
of an integral domain is not even an integral domain thanks to the zero-divisors x′ and
y′.

3. Normal rings

Definition 3.1. Let A be an integral domain with fraction field K. The integral closure
(or normalization) A of A is the set elements x ∈ K which satisfy a monic polynomial
equation p(x) = 0 with coefficients in A. The ring A is normal if A = A.

Proposition 3.2. A is normal ⇐⇒ Ap is normal for each prime ideal p ⊂ A.

Example 3.3. (a) The integers Z form a normal ring, for if a/b ∈ Q satisfies an equation
xr + c1x

r−1 + · · ·+ cr = 0 with ci ∈ Z with (a, b) = 1, multiplying by br gives

ar + c1a
r−1b + . . . crb

r = 0

so that b|ar and it follows that b = 1.

(b) The ring R = Z[
√

5] is not normal, because x = (1 ±
√

5)/2 ∈ Q(
√

5) are roots

of the quadratic monic equation x2 − x − 1. The integral closure is R = Z[
1 +
√

5

2
]. In

general Z[
√
d] is normal exactly for square-free d which are not equivalent to 1 mod 4.

This definition has geometric consequences. If X ⊂ Cn is an algebraic variety defined
by the ideal I ⊂ C[x1, . . . , xn], then we say X is normal if each local ring OX,x is normal,
which by Proposition 3.2 is equivalent to normality of the affine coordinate A(X) =
C[x1, . . . , xn]/I. This definition implies that the singular locus of X has codimension
≥ 2 among other things: hence a normal curve is smooth and a normal surface has only
finitely many singularities.
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Proposition 3.4. Let (R,m) be a regular local ring. Then R is a normal ring.

Geometrically this tells us that every smooth variety is normal.

4. Class groups

From now on I will only work with noetherian rings, meaning that every ideal is
finitely generated. The class of noetherian rings include fields (there is only one ideal,
namely (0)!) and PIDs (ideals are generated by one element). If R is noetherian, then so
are R[x], any localization S−1R, and any quotient ring R/I. In particular, if X ⊂ Cn is
an algebraic variety, then the affine coordinate ring A(X) = C[x1, . . . , xn]/IX and all the
local rings OX,x are noetherian.

We’ve all seen ideals in a ring: there are similar structures in the fraction field.

Definition 4.1. A fractional ideal J of an integral domain R is an R-submodule J ⊂
K = K(R) for which there exists d ∈ R with dJ ⊂ R.

Remark 4.2. Since I = dJ ⊂ R forms an ideal in the usual sense, the fractional ideals

are simply J =
1

d
I ⊂ K where I ⊂ R is a traditional ideal.

We would like to be able to make a group out the fractional ideals with identity element
(1) = R ⊂ K. We can multiply fractional ideals, but existence of inverses is a problem.
Given I ⊂ K, the natural candidate for I−1 is (I : R) = {a ∈ K : aI ⊂ R} and one would
hope that (I−1)−1 = I. With the notation I = ((I : R) : R), we say that I is divisorial
if I = I.

Proposition 4.3. I is the smallest divisorial ideal containing I.

With this in mind, the set D(R) of divisorial ideals is a multiplicative monoid under
the product I · J = IJ . This still doesn’t produce a group, but we’re almost there.

Theorem 4.4. D(R) is a group if and only if R is a normal ring (integrally closed). In
this case D(R) is freely generated by the height 1 primes in R.

A principal fractional ideal has the form (a) = {a · r : r ∈ R} ⊂ K for 0 6= a ∈ K.
The principal fractional ideals form a subgroup of D(R) denoted P (R).

Definition 4.5. The class group of R is the quotient group Cl(R) = D(R)/P (R).

Example 4.6. With Remark 4.2 in mind, we see that if R is a PID, then every fractional
ideal is principle. Indeed, if dJ ⊂ R is equal to (c), then J = (c/d) ⊂ K. Thus if R is a
PID, then ClR = 0. The converse is true if R is a Dedekind domain (equivalently every
fractional ideal is divisorial).

Example 4.7. The classic example of a non-UFD is R = Z[
√
−5] due to the non-unique

factorization 2 · 3 = (1−
√
−5) · (1 +

√
−5). One can show that ClR ∼= Z/2Z is generated

by the non-principal ideal J = (2, 1 +
√
−5).

In fact, this seems to be the first occurrence of the class group. Gauss worked with
expressions that we now recognize as fractional ideals (the definition of ideal didn’t come
out until Kummer’s work in the later 1800s!) when he was working on unique factorization
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in the rings Z[
√
d]. For d < 0, he conjectured which such rings have class number 1, which

was finally proven by Stark in the 1960s. The problem is still open for d > 0.

Theorem 4.8. A normal integral domain R is a UFD if and only if ClR = 0.

Remark 4.9. Geometrically if X ⊂ Cn is a normal affine variety, we can define the class
group of X to be ClX = ClA(X) = ClC[x1, . . . xn]/IX (the definition is slightly more
involved for projective varieties). When X is smooth, then ClX = PicX is isomorphic to
the Picard group of line bundles modulo linear equivalence with tensor product as group
operation. When X is singular there is an exact sequence relating the two which takes
the form

(1) 0→ PicX → ClX →
⊕

p∈SingX

ClOX,p

We have used this to compute Picard groups of singular surfaces. The hard part is that the
Local Class Groups ClOX,p are usually very difficult to compute. On the other hand,

for any normal local ring (R,m) there is an injective group homomorphism ClR ↪→ Cl R̂,
so we may work in an appropriate power series ring with more tools.

Example 4.10. In the study of surface singularities a prominent role has been played by
the rational double points, originally defined by Artin in the early 60s. They have been
a test case for various conjectures because their resolutions are well-understood along
with other invariants. They are given by the analytic isomorphism classes given in the
following table.

Type Local Equation in C[[x, y, z]] Class group
An xy − zn+1 Z/(n + 1)Z
Dn x2 + y2z + zn−1 Z/4Z or Z/2Z⊕ Z/2/Z
E6 x2 + y3 + z4 Z/3Z
E7 x2 + y3 + yz3 Z/2Z
E8 x2 + y3 + z5 0

5. Some open questions

Srinivas proved that rational double point singularities are completions of UFDs en
route to his calculation of K0(R) = Z for any complete rational double point ring R [19].
This led him to ask more general questions about normal local integral domains.

Question 5.1. Given a complete normal local ring B, what are the possible images
ClA ↪→ Cl Â = ClB over all local rings A with completion isomorphic to B?

Question 5.2. Special case of the above question: when is B the completion of a UFD
which is of essentially finite type over C?

Heitmann has given a complete characterization of normal local rings which are comple-
tions of UFDs [10], but his constructions are set-theoretic and rarely produce geometric
rings. Srinivas and Parameswaran proved that any isolated local complete intersection
singularity is analytically isomorphic to a UFD [17]. For hypersurface singularities, we
are able to achieve the same result of arbitrary singularities:
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Theorem 5.3. Let A = C[[x1, . . . xn]]/f , where f is a polynomial defining a variety V
which is normal at the origin. Then there exists a hypersurface X ⊂ Pn

C and a point p ∈ X

such that R = OX,p is a UFD and R̂ ∼= A.

Regarding Question 5.1, Mohan Kumar [15] proved that for rational double points
on a rational surface, the analytic isomorphism class already determines the algebraic
isomorphism class (there are 3 exceptions) and in particular Srinivas’ question has a unique
answer there. In stark contrast to his result, we prove that in general ALL subgroups are
possible for rational double point singularities:

Theorem 5.4. Fix T ∈ {An,Dn,E6,E7,E8} and a subgroup H of the class group of the
completed local ring for a singularity of type T . Then there exists a surface S ⊂ P3

C and

a rational double point p ∈ S of type T such that ClOS,p ⊂ ĈlOS,p realizes H.
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