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1. Examples

Earlier we defined the class group ClX of Weil divisors for an algebraic variety X and
the Cartier class group CaClX of Cartier divisors (which is isomorphic to the Picard
group of isomorphism classes of line bundles with tensor product). These groups are
isomorphic when X is smooth. In general it is quite difficult to compute these groups.
In this section we will give some classic examples without proof.

Example 1. Earlier we showed that Cl Cn = 0 and Cl Pn ∼= Z, generated by a
hyperplane H ⊂ Pn.

Example 2. A very classical example understood in the 1800s is that of a smooth
projective curve X . A divisor D on X can be written

∑
nipi where pi are points on X ,

and we can define deg D =
∑

ni. This gives a surjective homomorphism deg : PicX →

Z whose kernel consists of the degree 0 divisors, denoted Pic0X . Via exponential
sequence

0 → Z → O → O∗ → 0

and the isomorphisms PicX ∼= H1(X,O∗) and H2(X, Z) ∼= Z, the degree map can be
identified with the cohomology map H1(X,O∗) → H2(X, Z), so the kernel Pic0X is
the quotient H1(X,O)/H1(X, Z), which shows that Pic0X is an abelian variety (Lie
group) of dimension g. In particular, if X is not a rational curve (i.e. g > 0), then
Pic X is not a discrete group.

Remark 1. If X ⊂ P
n−1 ⊂ P

n is a variety, one can consider the cone C(X) over X
in Pn with vertex p. Via the projection map C(X) → X (whose fibres are lines), one
can pull back divisors which gives an isomorphism Cl X → Cl C(X).

Example 3. The surface X ⊂ P3 given by equation xy − z2 = 0 is a cone over
the a smooth plane conic (with same equation) in P2. The plane conic is isomorphic
to P1, so PicP1 ∼= Z is generated by a point by Example 1 and hence Cl X ∼= Z

generated by a ruling. This ruling is not a Cartier divisor, but the union of two rulings
is (it’s a hyperplane section of X , see previous talk) and it generates the PicX . Thus
Pic X ⊂ Cl X are both isomorphic to Z with cokernel Z/2Z.
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Remark 2. In general Picard groups don’t work well with products, but there are two
nice special cases:

(1) Pic (X ×Cn) ∼= Pic X, the isomorphism being given by pulling back line bundles
under the projection map X × Cn → X.

(2) Pic (X×Pn) ∼= Pic X⊕Z. Here the projection X×Pn → X induces an injection
Pic X → Pic (X × Pn). One uses the fibres ∼= Pn (with Picard group Z) to establish
the splitting.

Example 4. Consider the smooth quadric surface X ⊂ P3 given by equation xy−zw =
0. It’s not hard to show that X is exactly the image of a closed embedding P

1×P
1 ↪→ P

3

given by (a, b), (c, d) 7→ (ac, bd, ad, bc), the Segre embedding. Now Pic P1 ×P1 ∼= Z⊕Z

by Remark 2 above. Moreover, it is generated by opposite rulings on X .

Remark 3. It is a general fact that if f : X̃ → X is the blow-up at a point, then

Pic X̃ ∼= Pic X × Z, the new generator being given by the exceptional divisor.

Example 5. If X ⊂ P3 is a general cubic surface, it’s a rational surface, isomorphic to
P2 with 6 points blown up. Applying Remark 3 successively, we find that Pic X ∼= Z7,
generated by the pull-back of a line on P2 and the 6 exceptional divisors. It is well
known that in fact X contains 27 lines.

2. Noether-Lefschetz Theorem

If X ⊂ Pn is a projective variety and H ⊂ Pn is a general hyperplane, one can
consider the subvariety X ∩ H ⊂ X . There is a restriction map of line bundles ρ :
Pic X → Pic X ∩ H. We now consider the following general question: when is ρ an
isomorphism? Lefschetz proved a result, which was extended by Grothendieck:

Grothendieck-Lefschetz Theorem. Let X ⊂ Pn be a smooth subvariety and let H
be a general hyperplane. Then

ρ : Pic X → Pic X ∩ H

is an isomorphism if dim X > 3.

Example 6. Let X = Pn for some n > 3. One can use the monomials of degree d in
the homogeneous coordinates to embed X into a larger projective space P

N ; this map is
called the d-uple embedding Fd : Pn → PN and the pull-back under Fd of hyperplanes
H ⊂ PN gives all the degree d hypersurfaces in Pn. Applying the Grothendieck-
Lefschetz theorem, we conclude that for n > 3, the general hypersurface Sd ⊂ Pn has
Pic Sd

∼= Z generated by H ∩ Sd, where H is a general hyperplane in Pn.

Question. Under what conditions is it true that the restriction map Pic Pn → Pic Sd

is an isomorphism for a general hypersurface Sd ⊂ Pn of degree d?

Special Cases: We can answer the question in some special cases fairly easily:
(1) If n > 3, the answer is yes by the Grothendieck-Lefschetz theorem.
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(2) If n = 1, the question is silly because the general hypersurface is a finite set of
points, which have trivial Picard group.

(3) If n = 2, the answer is yet only if d = 1. For d = 2 the cokernel is a group
of order 2, while for d > 2 the hypersurface Sd is a smooth projective curve of genus
g = 1

2
(d − 1)(d − 2) > 0, which has infinitely generated Picard group by Example 2.

(4) The case n = 3 is quite interesting. Here we consider different values of d:
(a) d = 1 the answer is yes.
(b) d = 2 the answer is no by Example 4.
(c) d = 3 the answer is no by Example 5.
(d) d ≥ 4 here things are not obvious at all, but Noether had an inspired answer,

which is that the answer should be yes.

Noether’s Idea: The cases d = 2 and d = 3 fail in large part because general quadric
and cubic surfaces necessarily contain LINES. Noether saw that the general QUARTIC
equation cannot contain any lines by the following dimension count:

• The space of all quartics is given by their equations modulo scalar. There are 35
monomials of degree 4 in 4 variables, so this family has dimension 34.

• How many quartics contain lines? The family of lines in P3 has dimension 4, it is
given by the Grassmann variety Grass2(4). A fixed line L has ideal generated by two
linear forms, giving a resolution

0 → S(−2) → S(−1)2 → IL → 0

from which one can read off dim(IL)4 = 30, so modulo scalars there is a 29-dimensional
family of quartics containing a fixed line. Adding up, the quartics containing a line
form a family of dimension 33 < 34.

It’s hard to extend Noether’s idea, because there are way too many families of curves
lying on surfaces. However using complex methods and monodromy, Lefschetz [L] was
able finish the job:

Noether-Lefschetz Theorem. If Sd ⊂ P3 is a general surface of degree d ≥ 4, then
the restriction map Pic P

n → Pic Sd is an isomorphism.

Remark 4. In the 1960s, Mumford proposed the challenge of actually writing down a
degree d = 4 polynomial whose zero set S4 is a smooth surface satisfying the conclusion
of the Noether-Lefschetz theorem. This was not achieved until the last few years by
Ronald van Luijk [vL]. It appears on page 1 of Volume 1 in the new journal “Algebra
Number Theory”.

3. Recent developments

While the Noether-Lefschetz theorem was proved in the 1920s, there was a revival
of interest in the subject around 1990. In 1985 Griffiths and Harris gave a new alge-
braic proof of the theorem [GH]. There were several new approaches using infinitesimal
variations of Hodge structures, and generalizations to singular surfaces. Here’s a fun
variant of the theorem from Angelo Lopez’ 1990 Ph.D. thesis.
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Theorem (Lopez). Let C ⊂ P3 be a smooth connected curve. If the homogeneous
ideal for C is generated by polynomials of degree ≤ d − 1, then the general degree
d surface Sd containing C is smooth with Picard group freely generated by the plane
H ∩ Sd and the divisor C ⊂ Sd.

The above theorem is appealing because the geometry entirely determines the Picard
group. Very recently John Brevik and I extended this result to arbitrary curves in P3,
which may have many components, may have isolated or embedded points, or even by
non-reduced in the scheme-theoretic sense [BN]. The specific statement is this:

Theorem (Brevik and Nollet). Let Z ⊂ P3 be an arbitrary closed subscheme of
dimension ≤ 1 which lies on a surface with isolated singularities and suppose that the
homogeneous ideal of Z is generated by polynomials of degree ≤ d−1. Then the general
degree d surface Sd containing Z is normal with class group freely generated by the plane
H ∩ Sd and the supports of the curve components of Z.

Remark 5. The theorem above recovers several results in the area, for example:
• If Z = ∅, we recover the original Noether-Lefschetz theorem.
• If Z is a smooth connected curve, we recover Lopez’ theorem.
• If Z is zero dimensional, we recover a theorem of Joshi, which says that the Picard

group of the general singular surface is generated by a plane H.
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