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Abstract: Given a Riemannian manifold, we suppose that we are given a foliation on the
manifold, i.e. a layering of immersed submanifolds. We will discuss the mean curvature vector
fields and dual one-forms associated to this structure and explain their meaning. We show how
to modify one metric into any other, and we quantify how the modification affects the mean
curvature. Part of this talk contains joint work with Igor Prokhorenkov and Marco Radeschi.
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1. What is mean curvature?

Let (M, g) be a Riemannian manifold of dimension n. Many of the computations we will
use are local, and in that case there is no reason to assume M is closed (compact and without
boundary). When we start talking about global quantities like cohomology, we will probably
restrict to the closed manifold case.
LetN be a submanifold ofM of dimension p. We do not necessarily assume it is embedded, so

for example, it could be the set
�
(x, y) = R

2�Z
2 : x =

p
2y
 
, which forms a dense, immersed

submanifold in the torus T 2 = R
2�Z

2.
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Let {fµ}1ÿµÿp be a local orthonormal frame of N 7 M . Then we can take the covariant

derivative rfµfµ in direction fµ and compute its component (rfµfµ)
? orthogonal to the sub-

manifold N . The mean curvature vector field H of N is defined to be the vector field on M
defined locally along N that is given by the formula

H =

pX

µ=1

(rfµfµ)
? .

We could check that the definition does not depend on the choice of orthonormal frame.
If the local vector fields is extended in any way to be defined in an M -neighborhood of the
point of N , we would get the same result when restricted to N . The submanifold N is called
minimal if H = 0 at all points.
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The mean curvature is the force vector of surface tension, up to a constant. Note that by
rescaling the metric by a constant c2 (shrinking N and M), the mean curvature vector field
gets multiplied by 1

c2
.

The mean curvature form ÿ is the one-form along N defined as ÿ (vx) = hvx, Hxi for x 2 N ,

vx 2 TxM ; i.e. we say ÿ = H
[
. Again, this can be extended in an M -neighborhood. This

form contains the same information as H but does not change when the metric is rescaled. It
is still true that ÿ = 0 if and only if the submanifold N is minimal.
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The form ÿ can be computed using Rummler’s formula:

d� = �ÿ ^ � + ',

where � is the volume form along the submanifold (extended in a neighborhood of N , also
called characteristic form), and ' is a (p + 1)-form on a neighborhood of N such that
v1yv2y...vpy' = 0 on N whenever all of the vectors v1, ..., vp are tangent to N . For a k-form µ,
if v is a vector at a point x, then vyµ is the element of ^k�1T å

xM defined by vyµ = µ (v, ·, ..., ·).
So the condition on ' says roughly that ' has at most p� 1 “directions” along N . The pieces
of this formula may be identified as the (1, p) and (2, p� 1) components of d�, where the first
index indicates the number of components normal to the submanifold direction and the second
index indicates the directions in the submanifold direction.
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Rummler’s formula is most often used in the context of a foliation (layering of submani-
folds like N so that locally the manifold if diffeomorphic to a product of manifolds). In this
case, we may locally choose an adapted orthonormal frame f1, ..., fp, e1, ..., eq for the tangent
bundle, where {f1, ..., fp} spans the tangent space TF to the “leaves” (local submanifolds)
and {e1, ..., eq} spans the normal bundle NF to the leaves. Then the duals of these vec-
tor fields f 1, ..., f p, e1, ..., eq form a local adapted orthonormal basis for the cotangent bundle
T åM = T åF � N åF . This could also certainly be done for any distribution of rank p, i.e.
a subbundle of the tangent bundle that it is not necessarily integrable. With this adapted
coframe, the characteristic form � satisfies

� = f 1 ^ f 2 ^ ... ^ f p.
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Aside: If we use the Levi-Civita connection to calculate covariant derivatives of elements of
an orthonormal frame {vj} and coframe {vj}, we obtain the formula

rvjvk =
X

s

!s
jkvs,

for some functions !s
jk dependent on the metric, with symmetry !s

jk = �!k
js. Using properties

of tensor derivations, we obtain corresponding derivatives for coframe elements:

rvjv
k = �

X

s

!k
jsv

s =
X

s

!s
jkv

s.

We note also that this formula can be used to calculate the differentials of these one-forms:

d
�
vj
�
=
X

i

vi ^rviv
j = �

X

i,k

!j
ikv

i ^ vk.
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Now, suppose a distribution of rank p has a local adapted orthonormal frame f1, ..., fp, e1, ..., eq
with corresponding adapted coframe f 1, ..., f p, e1, ..eq. We will use Greek indices to indicate
the f· indices, and Roman indices to indicate the e· indices. Then we have

� = f 1 ^ f 2 ^ ... ^ f p

d� =
X

µ

(�1)µ+1 f 1 ^ ... ^ dfµ ^ ... ^ f p

=
X

µ

(�1)µ+1 f 1 ^ ... ^

0
@X

k,�

�
�!µ

k�e
k ^ f� � !µ

�kf
� ^ ek

�
�
X

r,s

!µ
rse

r ^ es

1
A

^... ^ f p

=
X

µ,k

(!µ
µk � !µ

kµ) e
k ^ � +

 X

µ,r,s

(�1)µ !µ
rse

r ^ es ^ f 1 ^ ... ^cfµ ^ ... ^ f p

!

= �ÿ ^ � + ',

where the two pieces of the formula have the desired properties, with ÿ of type (1, 0) and ' of
type (2, p� 1).
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Furthermore

ÿ =
X

µ,k

(!µ
kµ � !µ

µk) e
k =

X

µ,k

(0� !µ
µk) e

k

=
X

µ,k

!k
µµe

k =

0
@X

µ,k

!k
µµek

1
A

[

=

 X

µ

(rfµfµ)
?
![

= H
[
.

We note also that the form ' is zero if and only if the normal bundle to the distribution is
involutive (i.e. forms the tangent space to a foliation).
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The following are other equivalent formulas for mean curvature:

ÿ = (�1)p+1 �yd�,

ÿ =
X

µ,k

�
fµydf

µ, ek
�
ek =

X

µ,k

(ekyfµydf
µ) ek,

ÿ =
X

µ

fµyd1,0f
µ,

ÿ = �
X

µ,k

(fµ, [fµ, ek])e
k.
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Local conditions on the distribution:

(1) span {fµ} is the tangent space TF to a foliation: Frobenius condition [fµ, f�] 2 TF .
Equivalently, d

�
e1 ^ ... ^ eq

�
= �ÿ? ^ e1 ^ ... ^ eq for a one-form ÿ?

(2) The foliation is Riemannian and the metric is bundle-like: there is a choice�
ek
 
such that fµyde

k = 0 for all µ, k.

(3) The mean curvature is basic:
P

µ f�
�
!k
µµ

�
for all �, k, or fµydÿ = 0 for all µ.
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Example 1: A generic surface in R
3

Let z = f (x, y), a surface given as the graph of a function, inside Euclidean R
3. Note that

we can make this into a foliation of R3, by looking at the family of surfaces z = f (x, y) + c, as
c 2 R varies. We could write this parametrically by F (x, y) = (x, y, f (x, y)). Then a vector
basis of the tangent space at a point is {U, V }, where

U = Fx = @x + fx@z = (1, 0, fx)

V = Fy = @y + fy@z = (0, 1, fy)

(note these are not orthonormal). And an upward normal vector to the surface would be

W = �fx@x � fy@y + @z

(again, not normalized)
Corresponding covectors in T åF , N åF would be

U å = dx + fxdz, V
å = dy + fydz,

W å = �fxdx� fydy + dz
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Then the characteristic form � is a function ; times U å ^ V å:

� = ; (dx ^ dy + fxdz ^ dy + fydx ^ dz) ,

with
; =

�
1 + f 2

x + f 2

y

��1/2

Note the normalized conormal vector is

;W å = ; (�fxdx� fydy + dz)

Basic functions are functions of (z � f (x, y)).
We check that

d� = (� (;fx)x � (;) fy)y)dx ^ dy ^ dz,

which gives from d� = �ÿ ^ � + '

ÿ =
ã
(;fx)x + (;fy)y

;
W å

' = 0
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Thus the surface is minimal iff
(;fx)x + (;fy)y = 0

(compare to minimal surface equation). Note that this foliation is not Riemannian for the
standard metric except under strong conditions on f .
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Example 2: Helixes in R
3

Inside Euclidean R
3, consider the vector field V = �y@x + x@y + @z. This vector field is

tangent to the helixes µ (t) = (r cos (t) , r sin (t) , t + c) for constants r � 0, c 2 R. These are
the orbits of the one-parameter family of isometries0

@
x
y
z

1
A 7!

0
@

cos (t) � sin (t) 0
sin (t) cos (t) 0
0 0 1

1
A
0
@

x
y
z

1
A +

0
@

0
0
t

1
A .

An orthogonal basis for the normal bundle NF is

W = x@x + y@y, U = y@x � x@y +
�
x2 + y2

�
@z.
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Then the characteristic form of this foliation is

� =
1

|V |
V å = µ (�ydx + xdy + dz) ,

withµ =
�
x2 + y2 + 1

��1/2
, |V | =

�
x2 + y2 + 1

�1/2
.
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Covectors normal to the leaves away from the z-axis are:

W å = xdx + ydy, normalized
1

|W |
W å =

1p
x2 + y2

(xdx + ydy)

U å = ydx� xdy +
�
x2 + y2

�
dz,

normalized
1

|U |
U å =

1p
(x2 + y2) (x2 + y2 + 1)

�
ydx� xdy +

�
x2 + y2

�
dz
�
,

so |U | = |V | |W |
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Then

d� =
1

µ
dµ ^ � + µ (2dx ^ dy)

dµ = � (xdx + ydy)
�
x2 + y2 + 1

��3/2
= �µ3W å

W å ^ U å = �
�
x2 + y2

�
dx ^ dy +

�
x2 + y2

�
(xdx + ydy) ^ dz

W å ^ V å = (xdx + ydy) ^ (�ydx + xdy + dz)

=
�
x2 + y2

�
dx ^ dy + (xdx + ydy) ^ dz

W å ^ U å �
�
x2 + y2

�
W å ^ V å = �

�
x2 + y2

� �
x2 + y2 + 1

�
dx ^ dy

W å ^ U å � |W |2W å ^ V å = � |W |2 |V |2 dx ^ dy
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Then

d� = � 1

|V |2
W å ^ �� 2

|V |

7
1

|W |2 |V |2
W å ^ U å � 1

|V |2
W å ^ V å

ç

=
1

|V |2
W å ^ �� 2

1

|W |2 |V |3
W å ^ U å,

so that

ÿ = � xdx + ydy

(x2 + y2 + 1)

' = �2
1

|W |2 |V |3
W å ^ U å

=
2

(1 + x2 + y2)3/2
(dx ^ dy � (xdx + ydy) ^ dz)
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This metric is bundle-like and has basic mean curvature.

ÿ = � rdr

(r2 + 1)
= �1

2
d
�
log
�
r2 + 1

��
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2. Metric modification

Given two metrics g1 and g2 on a Riemannian manifold M , tg1 + (1� t) g2 is another Rie-
mannian metric for 0 ÿ t ÿ 1. (Check that we get a positive definite inner product on each
TxM , for all t.)
But what if it has additional structure. Are the structures preserved? Not necessarily. For

instance, suppose g1 and g2 are two bundle-like metrics for the foliation (M,F). It is possible
that tg1 + (1� t) g2 is not a bundle-like metric.

Mobile User
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Interestingly enough, however, it turns out that if g1 and g2 are the corresponding dual metrics
on T åM , then it is true that tg1 + (1� t) g2 is the dual metric of a Riemannian foliation, for
0 ÿ t ÿ 1.

Mobile User
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Another question: say (M,F , g0) and (M,F , g1) have basic mean curvature, and we might
ask if there is a natural one-parameter family of metrics gt such that (M,F , gt) has basic mean
curvature for 0 ÿ t ÿ 1. It turns out that the dual metric straight-line homotopy does not
work.
However, there is a way to deform any metric in a nice way, given that we have the structure

of a foliation (M,F). There are three separate things that we can do to a metric, and these
operations commute with each other, and they can be used to homotop any metric on M to
any other metric on M .

Mobile User
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The three operations:

(1) Homotop the cometrics on Qå = annih (L), which is the same subspace of T åM , no
matter what metrics are given. By the way, this has no effect on ÿ, at all. (However, it
may have an effect on H .)

Mobile User
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(2) Homotop the metrics on L.
This does have an effect on ÿ: Let the leafwise metric gF be deformed by the one-
parameter family gF ,t such that gF ,0 = gF and gF ,1 = egF . Since the orthogonal space to
the leaves is not varying, the characteristic form satisfies �F ,t = eft�F ,0 for all t. Then

d (�F ,t) = dft ^ eft�F ,0 + eftd�F ,0

= dft ^ eft�F ,0 + eft (�ÿ0 ^ �F ,0 + '0)

= � (ÿ0 � dft) ^ �F ,t + '0,t.

Then the mean curvature ÿt satisfies

ÿt = ÿ0 � dft,

so that f0 = 1 and f1 is basic, if both ÿ and eÿ are basic.

Mobile User
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If we in addition multiply this family of metrics by a scalar function (depending on t)
such that �F ,t is multiplied by ePbft�ft, then the resulting new family of metrics satisfies

ÿ0 = ÿ, ÿ1 = eÿ, ÿt is basic

and yet we still have gF ,0 = gF and gF ,1 = egF . Here, Pb is the averaging over leaf closures,
which preserves smoothness if there exists a bundle-like metric for the foliation.

Mobile User
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(3) We deform the metric so that the orthogonal complement of L in TM is changed to a
different complementary subbundle to L in TM . So, for instance, we may deform a metric
so that the orthogonal complement of L with respect to a given first metric becomes the
orthogonal complement of L with respect to a second metric.

Mobile User
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Suppose that both the leafwise and normal metrics of g and eg are the same, and so
there exists � 2 Ω

1,1 such that eÿ � ÿ = �0,�1� (derivation below). Since both mean
curvatures are basic, �0,�1� = 0, because any such form is orthogonal to the space of
basic one-forms. Here, � may be determined as follows: With the local orthonormal
framing as above for the first metric, ek and each fµ are unchanged, and there exist
local, uniquely determined leafwise vector fields V1 = Bµ

1 fµ, ..., Vq = Bµ
q fµ such that

{eek = ek + Vk = ek + Bµ
k fµ : 1 ÿ k ÿ q} forms a local orthonormal frame of eQ = L

e?

with the second metric. We will deform the metric as a function of the basic t parameter

as follows: let fQt be spanned by {eek = ek + tVk : 1 ÿ k ÿ q}. Then

�t = �tek ^ V [
k = �tBµ

k e
k ^ fµ,

where the isomorphism [ is with respect to the first metric.

Mobile User



FOLIATIONS, METRICS, AND MEAN CURVATURE 29

Then
ÿt � ÿ = �0,�1 (t�) = t�0,�1 (�) = 0,

since �0,�1 commutes with multiplication by basic functions. Hence, ÿt = ÿ for all t and
thus remains basic throughout the deformation.

Mobile User
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To see a proof of this, note that eek = ek and efµ = fµ � tBµ
k e

k. Then

ÿt =
ã
eeky efµyd efµ

;
eek

=
ãã

ek + tB�
k f�

;
yfµyd

�
fµ � tBµ

` e
`
�;

ek

= ÿ +
ã
tB�

k f�yfµydf
µ
;
ek � t

�
ekyfµyd

�
Bµ

` e
`
��

ek

�t2
ã
B�

k f�yfµyd
�
Bµ

` e
`
�;

ek,

Mobile User
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so that

ÿt � ÿ =
ã
B�

k f�yfµydf
µ
;
ek � t

�
ekyfµyd (B

µ
` ) ^ e`

�
ek � t2

ã
B�

k f�yfµyd (B
µ
` ) ^ e`

;
ek

= t
ã
B�

k f�yfµydf
µ
;
ek � tfµ (B

µ
k ) e

k = t
ã
B�

k f�yfµydf
µ � fµ (B

µ
k )
;
ek

= t
ã
B�

k f�yfµy
�
�!µ

�;f
� ^ f ;

�
� fµ (B

µ
k )
;
ek

= t
ã
B�

k

�
!µ
�µ � !µ

µ�

�
� fµ (B

µ
k )
;
ek = t

ã
�B�

k!
µ
µ� � fµ (B

µ
k )
;
ek
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Next, observe that with �t = �tek ^ V [
k = �t

�
ek ^ Bµ

k f
µ
�
and that �0,�1 is the leafwise

divergence on leafwise one-forms. Also, �0,�1 anticommutes with wedging with basic one-forms.
Then

�0,�1 (�t) = �t�0,�1

�
ek ^Bµ

k f
µ
�

= tek ^ �0,�1 (B
µ
k f

µ)

= �tek ^ f�yrf� (B
µ
k f

µ)

= �tek ^ f�y
ã
f� (B

µ
k ) f

µ + Bµ
k!

�
�µf

�
;

= �t
ã
f�

ã
B�

k

;
+ Bµ

k!
�
�µ

;
ek = ÿt � ÿ

Hence we may deform one metric with basic mean curvature into another metric with basic
mean curvature through a deformation dependent on a basic function, such that each metric
along the deformation also has basic mean curvature.
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