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Abstract: Given a Riemannian manifold, we suppose that we are given a foliation on the
manifold, i.e. a layering of immersed submanifolds. We will discuss the mean curvature vector
fields and dual one-forms associated to this structure and explain their meaning. We show how
to modify one metric into any other, and we quantify how the modification affects the mean
curvature. Part of this talk contains joint work with Igor Prokhorenkov and Marco Radeschi.
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1. WHAT IS MEAN CURVATURE?

Let (M, g) be a Riemannian manifold of dimension n. Many of the computations we will
use are local, and in that case there is no reason to assume M is closed (compact and without
boundary). When we start talking about global quantities like cohomology, we will probably
restrict to the closed manifold case.

Let N be a submanifold of M of dimension p. We do not necessarily assume it is embedded, so
for example, it could be the set {(x, y)=R? 7% x = \/Qy}, which forms a dense, immersed
submanifold in the torus 7T? = R? /Z?2.



FOLIATIONS, METRICS, AND MEAN CURVATURE 3
Let {fa}ti<a<, be a local orthonormal frame of N C M. Then we can take the covariant

derivative V, f, in direction f, and compute its component (Vy, foé)L orthogonal to the sub-
manifold N. The mean curvature vector field H of N is defined to be the vector field on M

defined locally along N that is given by the formula

p
H=7) (Vi.fa)"
a=1

We could check that the definition does not depend on the choice of orthonormal frame.
If the local vector fields is extended in any way to be defined in an M-neighborhood of the
point of N, we would get the same result when restricted to N. The submanifold N is called

minimal if H = 0 at all points.
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The mean curvature is the force vector of surface tension, up to a constant. Note that by
rescaling the metric by a constant ¢* (shrinking N and M), the mean curvature vector field
gets multiplied by C%

The mean curvature form & is the one-form along N defined as « (v,) = (v, H,) for x € N,
v € T, M:; ie. we say kK = o Again, this can be extended in an M-neighborhood. This
form contains the same information as H but does not change when the metric is rescaled. It
is still true that x = 0 if and only if the submanifold N is minimal.
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The form k can be computed using Rummler’s formula:
dx = -k A X+ ¢,

where x is the volume form along the submanifold (extended in a neighborhood of N, also
called characteristic form), and ¢ is a (p + 1)-form on a neighborhood of N such that
V1 2V21... 0,0 = 0 on N whenever all of the vectors vy, ..., v, are tangent to N. For a k-form «,
if v is a vector at a point z, then v_a is the element of A¥"YT* M defined by vaa = a (v, -, ..., -).
So the condition on ¢ says roughly that ¢ has at most p — 1 “directions” along N. The pieces
of this formula may be identified as the (1, p) and (2,p — 1) components of dy, where the first
index indicates the number of components normal to the submanifold direction and the second
index indicates the directions in the submanifold direction.
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Rummler’s formula is most often used in the context of a foliation (layering of submani-
folds like N so that locally the manifold if diffeomorphic to a product of manifolds). In this
case, we may locally choose an adapted orthonormal frame fi, ..., fp, e1, ..., e, for the tangent
bundle, where {fi, ..., f,} spans the tangent space TF to the “leaves” (local submanifolds)
and {ey,...,e,} spans the normal bundle NF to the leaves. Then the duals of these vec-
tor fields f1, ..., 7, el, ..., e? form a local adapted orthonormal basis for the cotangent bundle
T*M = T*F & N*F. This could also certainly be done for any distribution of rank p, i.e.
a subbundle of the tangent bundle that it is not necessarily integrable. With this adapted
coframe, the characteristic form y satisfies

x=f"ANFEN A ST
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Aside: If we use the Levi-Civita connectipn to calculate covariant derivatives of elements of
an orthonormal frame {v;} and coframe {v/}, we obtain the formula

S
ijfuk: E Wik Vs,
S

. s . . s . k . .
for some functions w3y, dependent on the metric, with symmetry w?, = —w/,. Using properties
of tensor derivations, we obtain corresponding derivatives for coframe elements:

E_ k s s .S
V0" = g WiV = g WiEL”.
S S

We note also that this formula can be used to calculate the differentials of these one-forms:

d (Uj) = Zvi A\ Vvivj = — Zwﬁkvi A P,
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Now, suppose a distribution of rank p has a local adapted orthonormal frame f, ..., f,, €1, ..., €4
with corresponding adapted coframe f1, ..., f.el, ..e?. We will use Greek indices to indicate
the f. indices, and Roman indices to indicate the e. indices. Then we have

Y = fFANFEA LA S
dy = > (D" A LAdON LA S

(67

— Z (—1)0‘+1 A A Z (—wg‘@ek N wgkfﬁ A ek) — wa‘ser A e’
r,s

e} k.3
A A fP
= Z (W — w ) e A x + (Z (=) whe" AeS A FEA LA FON A fp>
oLk ,r,s
= —KAX+ o,

where the two pieces of the formula have the desired properties, with & of type (1,0) and ¢ of
type (2,p —1).
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Furthermore

Ck,k’ CY,]{
b
E : k k __ E : k
= Woa€ = Woa €k
oLk oLk

We note also that the form ¢ is zero if and only if the normal bundle to the distribution is
involutive (i.e. forms the tangent space to a foliation).
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The following are other equivalent formulas for mean curvature:
ko= (=1 xady,
K = Z (foz—'dfaa ek) e = Z (ek—'foz—'dfa) eka

o,k

oLk
K = Zfoz—'dl,Ofaa
K = _Z(faa[favek])ek'
o,k
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Local conditions on the distribution:

(1) span{f,} is the tangent space T'F to a foliation: Frobenius condition [f,, fs] € T'F.
Equivalently, d (e' A ... Ae?) = —x- A el A ... Ae? for a one-form k+

2) The foliation is Riemannian and the metric is bundle-like: there is a choice
{ek} such that f,.de® = 0 for all o, k.

(3) The mean curvature is basic: Y, f5 (wh,) for all 3, k, or foodk =0 for all a.
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Example 1: A generic surface in R?

Let z = f(x,y), a surface given as the graph of a function, inside Euclidean R?. Note that
we can make this into a foliation of R?, by looking at the family of surfaces z = f(x,y) + ¢, as

¢ € R varies. We could write this parametrically by F'(x,v),= (z,y, f (z,y)). Then a vector
basis of the tangent space at a point is {U, V'}, where

U = F:c — ax""fxaz - (Loafx)

V. = F,=0,+f,0.=(0,1, 1)

(note these are not orthonormal). And an upward normal vector to the surface would be

o—

(agaim not normalized) _ I

\U '
. — = e
Corresponding covectors in T*F, N*JF would be

|W\ )
(% U' = dx+ fodz, V" =dy + f,dz,

W W = —fudx — fydy+dz
|
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Then the characteristic form x is a function n times U* A V*:
X =n(deANdy+ fodz Ndy + f,dz Ndz),
with
n=(1+ 2+ )"
Note the normalized conormal vector is
nW* =n(—fudz — fydy + dz)

Basic functions are functions of (z — f (x,y)).
We check that

dx = (= (nfe), — () f,),)da A dy A dz.
which gives from dy = —k A x + ¢ 0

K = ((fo% + <77f?/>y) E/_*/
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Thus the surface is minimal iff

(nfz), + (ﬁfy)y =

(compare to minimal surface equation). Note that this foliation is not Riemannian for the
standard metric except under strong conditions on f.

17 (& )
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Example 2: HeliXes in R? (\?_@/\

Inside Euclidean R3, consider the vector field V = —yd, + x0, + 0,. This vector field is
tangent to the helixes a(t) = (rcos(t),rsin (t),t + ¢) for constants » > 0, ¢ € R. These are
the orbits of the one-parameter family of isometries

x cos (t) —sin(t)/0 x 0
y | — | sin(t) cos(t) )0 y |+ 0
2z 1 2z i

’__,_,_/ e Ty oz
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Then the characteristic form of #his foliation is

V* = a(—yde + xdy + dz) ,

witha = (22 + 2 + 1) 2 V] = (22 + 2+ )%

-
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Covectors normal to the leaves away from the z-axis are:

1 1
W* = xdx + ydy, normalized —W"* = ———— (xdx + ydy
W] VvVt +y? ( )
U* = ydr — zdy + (x2 + y2) dz,
1 1
normalized —U" = ydr — xdy + (2° + %) dz) |

so [U] =V [W]

17
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Then

dy = éd Ax+oz/(2ci_xA/ciyL
da = ={xdx + ydy) (x2+y2+1)_3/2:—043W*
W*AU* = — (22 + %) de Ady + (2° + y°) (wde + ydy) A dz
W*AV* = (zdx + ydy) A\ (—ydx + zdy + dz)

= (x2+y2) dx N\ dy + (zdx + ydy) A dz
WANU* = (2 + ) WAV = — (2 +¢°) (2P +y* + 1) dz A dy

WXAU* = [WPWAV* = —|W[ V[ de Ady
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Then
1 2 1 1
dy = ——W*"Av — WANU" ———W"AV*
YT TRt v QW\?W v )
I
so that — / V\CQW
p xdx + ydy é/ -
T 1) o (c*+ V)
1 ES

- 2 WrAU
e 72)3 5 (d A dy —(xgdyﬁ’/igz

N——
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This metric is bundle-like and has basic mean curvature.

k= _<T;"C_lf1) = 2 (log (7 + 1))

R
oo

) Z

A a4
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2. METRIC MODIFICATION

Given two metrics g; and g2 on a Riemannian manifold M, tg; + (1 — t) go is another Rie-
mannian metric for 0 < ¢ < 1. (Check that we get a positive definite inner product on each
T.M, for all t.)

But what if it has additional structure. Are the structures preserved? Not necessarily. For
instance, suppose g; and g9 are two bundle-like metrics for the foliation (M, F). It is possible
that tg; + (1 — t) g2 is not a bundle-like metric.



Richardson, Ken


AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[nterestingly enough, however, it turns out that if g' and ¢? are the corresponding dual metrics
on T*M, then it is true that tg' + (1 — ) g° is the dual metric of a Riemannian foliation, for

a0 = (M P
<T%/8 )§§&JW y ¥Q@&ﬁwx

—£)g, ¢ Nt
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