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Ken Richardson
Abstract: Given a Riemannian manifold, we suppose that we are given a foli-
ation on the manifold, i.e. a layering of immersed submanifolds. We will discuss
the mean curvature vector fields and dual one-forms associated to this structure
and explain their meaning. We show how to modify one metric into any other,
and we quantify how the modification a↵ects the mean curvature. Part of this
talk contains joint work with Igor Prokhorenkov and Marco Radeschi.
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1. What is mean curvature?

Let (M, g) be a Riemannian manifold of dimension n. Many of the computa-
tions we will use are local, and in that case there is no reason to assume M is
closed (compact and without boundary). When we start talking about global
quantities like cohomology, we will probably restrict to the closed manifold case.
Let N be a submanifold ofM of dimension p. We do not necessarily assume it

is embedded, so for example, it could be the set
�
(x, y) = R2�Z2 : x =

p
2y
 
,

which forms a dense, immersed submanifold in the torus T 2 = R2�Z2.
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Let {f↵}1↵p
be a local orthonormal frame ofN ✓ M . Then we can take the

covariant derivativerf↵
f↵ in direction f↵ and compute its component (rf↵

f↵)
?

orthogonal to the submanifold N . The mean curvature vector field H of N is
defined to be the vector field on M defined locally along N that is given by the
formula

H =
pX

↵=1

(rf↵
f↵)

?
.

We could check that the definition does not depend on the choice of orthonor-
mal frame. If the local vector fields is extended in any way to be defined in
an M -neighborhood of the point of N , we would get the same result when
restricted to N . The submanifold N is called minimal if H = 0 at all points.
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The mean curvature is the force vector of surface tension, up to a constant.
Note that by rescaling the metric by a constant c2 (shrinking N and M), the
mean curvature vector field gets multiplied by 1

c2
.

The mean curvature form  is the one-form along N defined as  (vx) =

hvx,Hxi for x 2 N , vx 2 TxM ; i.e. we say  = H
[

. Again, this can be
extended in an M -neighborhood. This form contains the same information as
H but does not change when the metric is rescaled. It is still true that  = 0
if and only if the submanifold N is minimal.
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The form  can be computed using Rummler’s formula:

d� = � ^ � + ',

where � is the volume form along the submanifold (extended in a neighbor-
hood of N , also called characteristic form), and ' is a (p + 1)-form on
a neighborhood of N such that v1yv2y...vpy' = 0 on N whenever all of the
vectors v1, ..., vp are tangent to N . For a k-form ↵, if v is a vector at a point
x, then vy↵ is the element of ^k�1

T
⇤
x
M defined by vy↵ = ↵ (v, ·, ..., ·). So the

condition on ' says roughly that ' has at most p � 1 “directions” along N .
The pieces of this formula may be identified as the (1, p) and (2, p� 1) compo-
nents of d�, where the first index indicates the number of components normal
to the submanifold direction and the second index indicates the directions in
the submanifold direction.
Rummler’s formula is most often used in the context of a foliation (layering of

submanifolds like N so that locally the manifold if di↵eomorphic to a product
of manifolds). In this case, we may locally choose an adapted orthonormal
frame f1, ..., fp, e1, ..., eq for the tangent bundle, where {f1, ..., fp} spans the
tangent space TF to the “leaves” (local submanifolds) and {e1, ..., eq} spans
the normal bundle NF to the leaves. Then the duals of these vector fields
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f
1
, ..., f

p
, e

1
, ..., e

q form a local adapted orthonormal basis for the cotangent
bundle T ⇤

M = TF �NF . This could also certainly be done for any distribu-
tion of rank p, i.e. a subbundle of the tangent bundle that it is not necessarily
integrable. With this adapted coframe, the characteristic form � satisfies

� = f
1 ^ f

2 ^ ... ^ f
p
.
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Aside: If we use the Levi-Civita connection to calculate covariant derivatives
of elements of an orthonormal frame {vj} and coframe {vj}, we obtain the
formula

rvj
vk =

X

s

!
s

jk
vs,

for some functions !s

jk
dependent on the metric, with symmetry !

s

jk
= �!

k

js
.

Using properties of tensor derivations, we obtain corresponding derivatives for
coframe elements:

rvj
v
k = �

X

s

!
k

js
v
s =

X

s

!
s

jk
v
s
.

We note also that this formula can be used to calculate the di↵erentials of these
one-forms:

d
�
v
j
�
=
X

i

v
i ^rvi

v
j = �

X

i,k

!
j

ik
v
i ^ v

k
.

Now, suppose a distribution of rank p has a local adapted orthonormal frame
f1, ..., fp, e1, ..., eq with corresponding adapted coframe f

1
, ..., f

p
, e

1
, ..e

q. We
will use Greek indices to indicate the f· indices, and Roman indices to indicate
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the e· indices. Then we have

� = f
1 ^ f

2 ^ ... ^ f
p

d� =
X

↵

(�1)↵+1
f
1 ^ ... ^ df

↵ ^ ... ^ f
p

=
X

↵

(�1)↵+1
f
1 ^ ... ^

0

@
X

k,�

�
�!

↵

k�
e
k ^ f

� � !
↵

�k
f
� ^ e

k
�
�
X

r,s

!
↵

rs
e
r ^ e

s

1

A

^... ^ f
p

=
X

↵,k

(!↵

↵k
� !

↵

k↵
) ek ^ � +

0

@
X

↵,r,s

(�1)↵ !↵

rs
e
r ^ e

s ^ f
1 ^ ... ^cf↵ ^ ... ^ f

p

1

A

= � ^ � + ',

where the two pieces of the formula have the desired properties, with  of type
(1, 0) and ' of type (2, p� 1).
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Furthermore

 =
X

↵,k

(!↵

k↵
� !

↵

↵k
) ek =

X

↵,k

(0� !
↵

↵k
) ek

=
X

↵,k

!
k

↵↵
e
k =

0

@
X

↵,k

!
k

↵↵
ek

1

A

[

=

 
X

↵

(rf↵
f↵)

?

![

= H
[

.

We note also that the form ' is zero if and only if the normal bundle to the
distribution is involutive (i.e. forms the tangent space to a foliation).
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The following are other equivalent formulas for mean curvature:

 = (�1)p+1
�yd�,

 =
X

↵,k

�
f↵ydf↵

, e
k
�
e
k =

X

↵,k

(ekyf↵ydf↵) ek,

 =
X

↵

f↵yd1,0f↵
,

 = �
X

↵,k

(f↵, [f↵, ek])e
k
.

Local conditions on the distribution:

(1) span {f↵} is the tangent space TF to a foliation: Frobenius condition
[f↵, f�] 2 TF . Equivalently, d

�
e
1 ^ ... ^ e

q
�
= �

? ^ e
1 ^ ... ^ e

q for a
one-form 

?

(2) The foliation is Riemannian and the metric is bundle-like:
there is a choice

�
e
k
 
such that f↵ydek = 0 for all ↵, k.

(3) The mean curvature is basic:
P

↵
f�

�
!
k

↵↵

�
for all �, k, or f↵yd = 0

for all ↵.
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