Traces, Determinants, and Toeplitz Operators

Let A be an $n \times n$ matrix with complex entries:

$$
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.
$$

Then

$$
\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}
$$

and

$$
\det A = \sum_{\sigma \in S_n} (\operatorname{sign} \sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.
$$

Properties of trace: For A and B in $M(n, \mathbb{C})$ and S in $GL(n, \mathbb{C})$,

- $tr(A + B) = tr A + tr B;$
- $tr(AB) = tr(BA);$
- $tr(SAS^{-1}) = tr A;$
- The trace of A is the sum of the eigenvalues of A.

Properties of determinant:

- det(AB) = det(BA) = (det A)(det B);
- det(SAS^{-1}) = det A;
- The determinant of A is the product of the eigenvalues of A.

Define the exponential of A as

$$
\exp A := \sum_{k=0}^{\infty} \frac{1}{k!} A^k.
$$

Warning: In general $\exp(A + B) \neq (\exp A)(\exp B)$ unless A and B commute. **Theorem:** det(exp A) = $e^{tr A}$

Let V be a complex vector space equipped with an inner product. This is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ such that for all elements v, w, and u in V and all complex numbers α and β ,

- $\langle \alpha v + \beta w, u \rangle = \alpha \langle v, u \rangle + \beta \langle w, u \rangle;$
- $\langle v, \alpha w + \beta u \rangle = \overline{\alpha} \langle v, w \rangle + \overline{\beta} \langle v, u \rangle;$
- $\langle w, v \rangle = \overline{\langle v, w \rangle};$
- $\langle v, v \rangle \geq 0$, with $\langle v, v \rangle = 0$ if and only if $v = 0$.

An *orthonormal basis* for V is a vector space basis ${e_k}_{k=1}^n$ for V with the additional properties

- $\langle e_k, e_k \rangle = 1$ for $1 \leq k \leq n$;
- $\langle e_k, e_\ell \rangle = 0$ for $k \neq \ell$.

Let A be a linear transformation of V . Then

$$
\text{tr}\,A = \sum_{k=1}^{n} \langle Ae_k, e_k \rangle
$$

and

$$
\det A = \sum_{\sigma \in S_n} (\text{sign}\,\sigma) \left\langle Ae_1, e_{\sigma(1)} \right\rangle \left\langle Ae_2, e_{\sigma(2)} \right\rangle \cdots \left\langle Ae_n, e_{\sigma(n)} \right\rangle.
$$

These quantities are independent of the choice of orthonormal basis.

The *adjoint* of A is the linear transformation determined by the equation

$$
\langle Av, w \rangle = \langle v, A^*w \rangle
$$

for all v and w in V .

If we write A as a matrix with respect to an orthonormal basis, then A^* is the complex conjugate transpose of A; i.e., the (i, j) entry of A^* is $\overline{a_{ji}}$. Thus

$$
\operatorname{tr} A^* = \overline{\operatorname{tr} A}, \qquad \det A^* = \overline{\det A}.
$$

Now let V be an infinite-dimensional complex inner product space and define a norm $||v|| := \sqrt{\langle v, v \rangle}$ for every v in V. We say that V is complete if every Cauchy sequence with respect to this norm is convergent. In this case we will use the letter H to denote our complex inner product space, and we call it a Hilbert space.

We will only consider *separable* Hilbert spaces. This means that H contains a countably infinite subset ${e_k}$ with the following properties:

• $\langle e_k, e_k \rangle = 1$ for all k;

\n- $$
\langle e_k, e_\ell \rangle = 0
$$
 for $k \neq \ell$;
\n- $v = \sum_{k=1}^{\infty} \langle v, e_k \rangle e_k$ for every v in \mathcal{H} .
\n

Warning: the set ${e_k}$ is **not** a vector space basis!

Let A be a linear transformation of H . We say that A is *bounded* if

$$
||A|| := \sup \left\{ \frac{||Av||}{||v||} : v \neq 0 \right\} < \infty.
$$

We will call a bounded linear transformation of H an *operator* on H .

The collection of all operators on H is an *algebra* (closed under addition, multiplication [composition], scalar multiplication], and is denoted $\mathcal{B}(\mathcal{H})$.

How do we define trace for operators on \mathcal{H} ?

Naive idea: choose an orthonormal basis ${e_k}$ for H and set

$$
\operatorname{tr} A = \sum_{k=1}^{\infty} \left\langle Ae_k, e_k \right\rangle.
$$

Problem 1: The right-hand side does not necessarily converge.

Example:

$$
\operatorname{tr} I = \sum_{k=1}^{\infty} \langle I e_k, e_k \rangle = \sum_{k=1}^{\infty} \langle e_k, e_k \rangle = \sum_{k=1}^{\infty} 1 = \infty.
$$

So not every operator has a well-defined trace.

Problem 2: Even if the right-hand side does converge, its value may depend on the choice of orthonormal basis.

An operator P on H is *positive* if $\langle Pv, v \rangle \geq 0$ for all v in H.

Example: Let A be any operator on \mathcal{H} . Then A^*A is positive, because

$$
\langle A^*Av, v \rangle = \langle Av, Av \rangle \ge 0.
$$

In fact, every positive operator P has this form for some operator A .

If P is positive, then $\sum_{n=0}^{\infty}$ $k=1$ $\langle Pe_k, e_k \rangle$ is in $[0, \infty]$ and is independent of the choice of orthonormal basis.

Every positive operator P has a positive *square root operator* \sqrt{P} . Define

$$
|A| := \sqrt{A^*A}.
$$

Example: Take

$$
A = \begin{pmatrix} -\frac{27}{25} + \frac{32}{25}i & -\frac{36}{25} - \frac{24}{25}i \\ -\frac{36}{25} - \frac{24}{25}i & -\frac{48}{25} + \frac{18}{25}i \end{pmatrix}.
$$

Then

$$
A^*A = \begin{pmatrix} \frac{29}{5} & \frac{12}{5} \\ \frac{12}{5} & \frac{36}{5} \end{pmatrix}.
$$

Let

$$
S = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}.
$$

Then

$$
S^{-1}(A^*A)S = \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix},
$$

whence

$$
\sqrt{S^{-1}(A^*A)S} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}
$$

and thus

$$
|A| = S\left(\sqrt{S^{-1}(A^*A)S}\right)S^{-1} = \begin{pmatrix} \frac{59}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{66}{25} \end{pmatrix}.
$$

Define

$$
\mathcal{L}^1(\mathcal{H}) := \left\{ A \in \mathcal{B}(\mathcal{H}) : \sum_{k=1}^{\infty} \langle |A|e_k, e_k \rangle < \infty \right\}.
$$

The set $\mathcal{L}^1(\mathcal{H})$ is an ideal in $\mathcal{B}(\mathcal{H})$ and is called the *ideal of trace-class operators* on H. For A in $\mathcal{L}^1(\mathcal{H})$ we can define tr A in the naive way we originally proposed:

$$
\operatorname{tr} A = \sum_{k=1}^{\infty} \langle Ae_k, e_k \rangle.
$$

Properties of tr:

- $tr(A + B) = tr A + tr B$ for A and B in $\mathcal{L}^1(\mathcal{H})$;
- $tr(AB) = tr(BA)$ for A in $\mathcal{L}^1(\mathcal{H})$ and B in $\mathcal{B}(\mathcal{H})$;
- $tr(SAS^{-1}) = tr A$ for A in $\mathcal{L}^1(\mathcal{H})$ and S in $\mathcal{B}(\mathcal{H})$ invertible;
- tr A is the sum of the eigenvalues of A for all A in $\mathcal{L}^1(\mathcal{H})$.

Remark: This last statement, known as Lidskii's theorem, was not proved until 1959.

How do we define the determinant?

For $||A|| < 1$, we can define the logarithm of $I + A$ by the infinite series

$$
\log(I + A) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} A^n.
$$

If A is trace class, then for $\mu \in \mathbb{C}$ with sufficiently small modulus, the operator $log(1 + \mu A)$ is also trace class, so we can define

$$
\det(I + \mu A) = e^{\text{tr}(\log(I + \mu A))}
$$

and then extend by analytic continuation, so that the domain of det is

$$
\mathrm{GL}\big(1,(I+\mathcal{L}^1(\mathcal{H}))\big),
$$

the multiplicative group of invertible elements of $\mathcal{B}(\mathcal{H})$ of the form $I + L$ for some L in $\mathcal{L}^1(\mathcal{H})$.

Properties of det:

- det(*AB*) = (det *A*)(det *B*) for *A* and *B* in $GL(1, I + \mathcal{L}^1(\mathcal{H}))$;
- det $A^{-1} = (\det A)^{-1}$ for A in $GL(1, (I + \mathcal{L}^1(\mathcal{H}));$
- det(SAS^{-1}) = det A for A in GL(1,($I + \mathcal{L}^1(\mathcal{H})$) and S in $\mathcal{B}(\mathcal{H})$ invertible;
- det A is the product of the eigenvalues of A for A in $GL(1, I + \mathcal{L}^1(\mathcal{H}))$.

These quantities are hard to compute directly, especially the determinant! However, in certain cases of geometric and/or topological interest, there are other ways to proceed.

Example 1:

Suppose $K : [a, b] \times [a, b] \to \mathbb{C}$ is continuous and define A in $\mathcal{B}(L^2[a, b])$ by the formula

$$
(Af)(x) = \int_a^b K(x, y) f(y) dy.
$$

This is an example of a compact operator. It is not always trace class (in fact, it is an open problem to find necessary and sufficient conditions on K so that A is trace class), but if A , is trace class, then

$$
\operatorname{tr} A = \int_a^b K(x, x) \, dx.
$$

We can also express $\det(I + A)$ in terms of K. For each n-tuple (x_1, x_2, \ldots, x_n) in $[a, b]$, define

$$
K_n(x_1, x_2, \dots, x_n) = \det \begin{pmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_n) \\ K(x_2, x_1) & K(x_2, x_2) & \cdots & K(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ K(x_n, x_1) & K(x_n, x_2) & \cdots & K(x_n, x_n) \end{pmatrix}
$$

Then

$$
\det(I+A) = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \int_a^b \cdots \int_a^b K_n(x_1, x_2, \ldots, x_n) \, dx_1 \, dx_2 \ldots dx_n.
$$

Example 2:

Consider the Hilbert space $L^2(S^1)$ with the inner product

$$
\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) \overline{g(\theta)} d\theta.
$$

This Hilbert space has orthonormal basis

$$
\{e^{in\theta} : n \in \mathbb{Z}\} = \{z^n : n \in \mathbb{Z}\}.
$$

Let $C(S^1)$ denote the algebra of continuous complex-valued functions on the circle. For each ϕ in $C(S^1)$, define an operator M_{ϕ} on $L^2(S^1)$ via pointwise multiplication:

$$
(M_{\phi}f)(x) = \phi(x)f(x).
$$

Next, let $H^2(S^1)$ be the Hilbert subspace of $L^2(S^1)$ whose orthonormal basis is

$$
\{z^n : n \ge 0\}.
$$

An alternate description of $H^2(S^1)$ is the Hilbert subspace of the elements of $L^2(S^1)$ that extend to analytic functions on the disk $\{z \in \mathbb{C} : |z| < 1\}.$

Define the *orthogonal projection* $P: L^2(S^1) \to H^2(S^1)$ by

$$
P\left(\sum_{n=-\infty}^{\infty} a_n z^n\right) = \sum_{n=0}^{\infty} a_n z^n.
$$

Then for each ϕ in $C(T)$, define the Toeplitz operator T_{ϕ} on $H^2(S^1)$ by the formula

$$
T_{\phi} = PM_{\phi}.
$$

Properties of Toeplitz operators: For ϕ and ψ in $C(S^1)$ and λ in $\mathbb{C},$

- $T_{\phi+\psi} = T_{\phi} + T_{\psi};$
- $T_{\lambda\phi} = \lambda T_{\phi};$
- $T^*_{\phi} = T_{\overline{\phi}}$.

 $T_{\phi\psi} \neq T_{\phi}T_{\psi}$ in general, but for ϕ and ψ in $C^{\infty}(S^1)$, we have

$$
T_{\phi}T_{\psi}-T_{\psi}T_{\phi}\in\mathcal{L}^{1}(\mathcal{H}).
$$

Surprisingly (at first), the trace of this quantity can be nonzero. This is because $T_{\phi}T_{\psi}$ and $T_{\psi}T_{\phi}$ are typically not trace class operators, but their difference is.

Example:

$$
T_{z^{-3}}T_{z^3}(z^n) = z^n
$$
 for all $n \ge 0$

$$
T_{z^3}T_{z^{-3}}(z^n) = \begin{cases} 0 & 0 \le n < 3\\ z^n & n \ge 3 \end{cases}
$$

Therefore

$$
\mathrm{tr}\left(T_{z^{-3}}T_{z^{3}}-T_{z^{3}}T_{z^{-3}}\right)=3.
$$

In general,

$$
\operatorname{tr}\left(T_{z^m}T_{z^n} - T_{z^n}T_{z^m}\right) = \begin{cases} n & \text{if } m+n=0\\ 0 & \text{otherwise.} \end{cases}
$$

Also observe that

$$
\frac{1}{2\pi i} \int_0^{2\pi} e^{im\theta} d(e^{in\theta}) = \frac{1}{2\pi i} \int_0^{2\pi} i n e^{im\theta} e^{in\theta} d\theta = \begin{cases} n & \text{if } m+n=0\\ 0 & \text{otherwise.} \end{cases}
$$

Theorem: For ϕ and ψ in $C^{\infty}(S^1)$,

$$
\operatorname{tr}(T_{\phi}T_{\psi}-T_{\psi}T_{\phi})=\frac{1}{2\pi i}\int_{S^1}\phi\,d\psi.
$$

Proof: Write ϕ and ψ in terms of the basis $\{z^n : n \geq 0\}$ and combine the linearity of the trace and the integral with the computations in the example above. \Box

We can generalize this result somewhat. Define

$$
\mathcal{T}^{\infty} := \left\{ T_{\phi} + L : \phi \in C^{\infty}(S^1), L \in \mathcal{L}^1(H^2(S^1)) \right\}.
$$

Then there exists a short exact sequence

$$
0 \longrightarrow \mathcal{L}^1(H^2(S^1)) \longrightarrow \mathcal{T}^{\infty} \xrightarrow{\sigma} C^{\infty}(S^1) \longrightarrow 0,
$$

and the symbol map $\sigma: \mathcal{T}^{\infty} \to C^{\infty}(S^1)$ is given by the formula $\sigma(T_{\phi} + L) = \phi$.

Theorem: For T and W in \mathcal{T}^{∞} ,

$$
\text{tr}(TW - WT) = \frac{1}{2\pi i} \int_0^{2\pi} \sigma(T)(\theta)\sigma(W)'(\theta) d\theta
$$

Now let's look at the determinant.

Take invertible elements T and W in \mathcal{T}^{∞} , and set $\phi = \sigma(T)$ and $\psi = \sigma(W)$. Then

$$
\sigma(TWT^{-1}W^{-1}) = \phi \psi \phi^{-1} \psi^{-1} = 1,
$$

whence $T_{\phi}T_{\psi}T_{\phi}^{-1}T_{\psi}^{-1}$ is in $I + \mathcal{L}^1(H^2(S^1)).$

$$
\det(TWT^{-1}W^{-1}) = ??
$$

Here is an answer in a very special case. If A is an element of \mathcal{T}^{∞} , then $\exp A$ is an invertible element of \mathcal{T}^{∞} with inverse exp(-A).

Theorem: For A and B in \mathcal{T}^{∞} ,

$$
\det(\exp A \exp B \exp(-A) \exp(-B)) = \exp\left(\frac{1}{2\pi i} \int_0^{2\pi} \sigma(A)(\theta) \sigma(B)'(\theta) d\theta\right).
$$

Let's look at this from a different point of view.

Let $\mathcal H$ be a Hilbert space. Then $\mathcal H^n$ is also a Hilbert space:

$$
\langle (v_1,v_2,\ldots,v_n),(w_1,w_2,\ldots,w_n)\rangle := \langle v_1,w_1\rangle + \langle v_2,w_2\rangle + \cdots + \langle v_n,w_n\rangle.
$$

We can view elements of $\mathcal{B}(\mathcal{H}^n)$ as elements of $M(n, \mathcal{B}(\mathcal{H}))$. By extending the notion of symbol in the obvious way, we have a short exact sequence

$$
0 \longrightarrow \mathcal{L}^1((H^2(S^1))^n) \longrightarrow M(n,\mathcal{T}^\infty) \xrightarrow{\sigma} M(n,C^\infty(S^1)) \longrightarrow 0.
$$

Suppose ϕ and ψ are arbitrary invertible elements of $C^{\infty}(S^1)$. Then we can find matrices R and S in $GL(3, \mathcal{T}^{\infty})$ such that

$$
\sigma(R) = \begin{pmatrix} \phi & 0 & 0 \\ 0 & \phi^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

and

$$
\sigma(S) = \begin{pmatrix} \psi & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \psi^{-1} \end{pmatrix}.
$$

For example, we can choose

$$
R = \begin{pmatrix} 2T_{\phi} - T_{\phi}T_{\phi^{-1}}T_{\phi} & T_{\phi}T_{\phi^{-1}} - I & 0 \\ I - T_{\phi^{-1}}T_{\phi} & T_{\phi^{-1}} & 0 \\ 0 & 0 & I \end{pmatrix}
$$

and

$$
S = \begin{pmatrix} 2T_{\psi} - T_{\psi}T_{\psi^{-1}}T_{\psi} & 0 & T_{\psi}T_{\psi^{-1}} - I \\ 0 & I & 0 \\ I - T_{\psi^{-1}}T_{\psi} & 0 & T_{\psi^{-1}} \end{pmatrix}
$$

We infer from the short exact sequence above that the operator $RSR^{-1}S^{-1}$ is determinant-class. Furthermore, the value of this determinant does not depend on the choice of R and S satisfying the properties above - the determinant of $RSR^{-1}S^{-1}$ only depends on ϕ and ψ .

Suppose that ϕ and ψ are restrictions of meromorphic functions (which we also denote ϕ and ψ) defined in a neighborhood of the closed unit disk such that neither ϕ nor ψ has zeros or poles on the unit circle. For each point z in the open unit disk D, define

$$
v(\phi, z) = \begin{cases} m & \text{if } \phi \text{ has a zero of order } m \text{ at } z \\ -m & \text{if } \phi \text{ has a pole of order } m \text{ at } z \\ 0 & \text{if } \phi \text{ has neither a zero nor a pole at } z, \end{cases}
$$

and similarly define $v(\psi, z)$. The quantity

$$
\lim_{w\to z}(-1)^{v(\phi,z)v(\psi,z)}\frac{\psi(w)^{v(\phi,z)}}{\phi(w)^{v(\psi,z)}}
$$

is called the *tame symbol* of ϕ and ψ at z and is denoted $(\phi, \psi)_z$.

Example:

$$
\phi(z) = \frac{z^3 - 3z^2}{2z + 1}
$$
 double zero at 0, simple zero at 3, simple pole at -1/2

$$
\psi(z) = \frac{2z - 1}{z^3}
$$
 simple zero at 1/2, triple pole at 0

$$
(\phi, \psi)_0 = \lim_{w \to 0} \left((-1)^{(2)(-3)} \frac{\left(\frac{2w-1}{w^3}\right)^2}{\left(\frac{w^2(w-3)}{2w+1}\right)^{-3}} \right)
$$

=
$$
\lim_{w \to 0} \frac{(2w-1)^2}{w^6} \cdot \frac{w^6(w-3)^3}{(2w+1)^3}
$$

=
$$
\lim_{w \to 0} \frac{(2w-1)^2(w-3)^3}{(2w+1)^3}
$$

= -27

$$
(\phi, \psi)_{-1/2} = \lim_{w \to -1/2} \left((-1)^{(-1)(0)} \frac{\left(\frac{2w-1}{w^3}\right)^{-1}}{\left(\frac{w^2(w-3)}{2w+1}\right)^0} \right)
$$

$$
= \lim_{w \to -1/2} \frac{w^3}{2w-1}
$$

$$
= \frac{1}{16}
$$

$$
(\phi, \psi)_{1/2} = \lim_{w \to 1/2} \left((-1)^{(0)(-1)} \frac{\left(\frac{2w-1}{w^3}\right)^0}{\left(\frac{w^2(w-3)}{2w+1}\right)^1} \right)
$$

$$
= \lim_{w \to 1/2} \frac{2w+1}{w^2(w-3)}
$$

$$
= -\frac{16}{5}
$$

We will not compute $(\phi, \psi)_3$ for reasons that will be become clear in a minute. For all other complex numbers z, we see that $(\phi, \psi)_z = 1$.

Theorem:

$$
\det(RSR^{-1}S^{-1}) = \prod_{z \in \mathbb{D}} (\phi, \psi)_z^{-1}.
$$

Remark 1: Suppose that T_{Φ} and T_{ψ} are invertible. Then we can take

$$
R = \begin{pmatrix} T_{\phi} & 0 & 0 \\ 0 & T_{\phi}^{-1} & 0 \\ 0 & 0 & I \end{pmatrix}
$$

and

$$
S = \begin{pmatrix} T_{\psi} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & T_{\psi}^{-1} \end{pmatrix},
$$

whence

$$
\det(RSR^{-1}S^{-1}) = \det \begin{pmatrix} T_{\phi}T_{\psi}T_{\phi}^{-1}T_{\psi}^{-1} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} = \det \left(T_{\phi}T_{\psi}T_{\phi}^{-1}T_{\psi}^{-1} \right).
$$

Remark 2: In fact, $\det(RSR^{-1}S^{-1})$ only depends on the *Steinberg symbol* $\{\phi, \psi\}$ of ϕ and ψ . This is an element of the algebraic K-theory group $K_2(C^{\infty}(S^1)),$ and we can use the above theorem to prove that certain Steinberg symbols are nontrivial.

Surprising fact that comes out of this circle of ideas: if both ϕ and $\psi := 1 - \phi$ are invertible, then $\det(RSR^{-1}S^{-1}) = 1$.

von Neumann Algebras

Definition: Let \mathcal{H} be a Hilbert space. A von Neumann algebra on \mathcal{H} is subalgebra A of $\mathcal{B}(\mathcal{H})$ such that

- A is a \ast -algebra; that is, if A is in A, then A^* is in A
- A is closed under the topology of pointwise convergence

Example 1: Let X be a locally compact Hausdorff space and let μ is a Borel measure on X. Then $L^{\infty}(X,\mu)$ is an abelian von Neumann algebra. Furthermore, every abelian von Neumann algebra arises in this manner.

Example 2: Let G be a discrete group. For each g in G, define $\lambda_g: \ell^2(G) \to$ $\ell^2(G)$ by the formula $\lambda(x) = gx$ for every x in G. Then $L^{\infty}(G)$ is the von Neumann algebra on $\ell^2(G)$ generated by the set $\{\lambda_g : g \in G\}$.

Open Question: Let F_n denote the free group on n generators. Is $L^{\infty}(F_2)$ isomorphic to $L^{\infty}(F_3)$?

A von Neumann algebra A is a *factor* if its center is \mathbb{C} .

Theorem: Every factor admits a trace on projections, and the range of this trace is exactly one of the following sets.

- $\{1, 2, 3, \ldots, n\}, \quad 1 \le n \le \infty$ type I_n factor
- $[0, 1]$ type II_1 factor
- $[0, \infty)$ type II_∞ factor
- $\{0,1\}$ type III factor

Examples:

- $M(n, \mathbb{C})$ is a type I_n factor, $1 \leq n < \infty$.
- If ${\mathcal H}$ is separable, then ${\mathcal B}({\mathcal H})$ is a I_∞ factor.
- \bullet If G is a group with the property that every nontrivial conjugacy class is infinite, then $L^\infty(G)$ is a II_1 factor.

$$
\mathrm{tr}\Bigl(\sum_{g\in G}a_g\lambda_g\Bigr)=a_e
$$

• $L^{\infty}(\mathbb{R})$ is a II_{∞} factor.

$$
\operatorname{tr}(f) = \int_{-\infty}^{\infty} f(x) \, dx
$$

 $\bullet\,$ Type III factors: you don't want to know.

Fun With K-theory!

Definition: Let A be a unital Banach algebra with norm $\|\cdot\|_A$ and let J be a not necessarily closed ideal in A . We say that (A, J) is a *relative pair of Banach* algebras if there exists a norm $\lVert \cdot \rVert_J$ on J such that

- 1. the ideal J is a Banach algebra in the norm $\lVert \cdot \rVert_j$;
- 2. for all j in J ,

$$
||j||_J \le ||j||_A;
$$

3. for all a and b in A and j in J ,

$$
||ajb||_J \le ||a||_A ||j||_J ||b||_A.
$$

A morphism between relative Banach pairs (A, J) and $(\widetilde{A}, \widetilde{J})$ is a continuous algebra map $\omega : (A, \|\cdot\|_A) \to (\widetilde{A}, \|\cdot\|_{\widetilde{A}})$ that restricts to a continuous map $\omega_{|J}$: $(J, \lVert \cdot \rVert_J) \to (J, \lVert \cdot \rVert_{\widetilde{J}}).$

Prototypical example: a type II_∞ factor.

If (A, J) is a relative pair of Banach algebras, then $(M(n, A), M(n, J))$ is also a relative pair of Banach algebras if we define

$$
\|a\|_{\mathcal{M}(n,A)} = \sum_{k,\ell=1}^n \|a_{k\ell}\|_A,
$$

and similarly define $||j||_{M(n, J)}$ for j in $M(n, J)$.

For each natural number n , define

$$
GL(n, J) = \{ G \in GL(n, J^+): G - I_n \in M(n, J) \}.
$$

Let $GL(n, J)_0$ denote the connected component of the identity, and define

$$
K_1^{\text{top}}(J) = \lim_{n \to \infty} \frac{\text{GL}(n, J)}{\text{GL}(n, J)_0}.
$$

Next, define

$$
[\mathop{\rm GL}\nolimits(n,J), \mathop{\rm GL}\nolimits(n,A)] = \left\{GHG^{-1}H^{-1}: G\in \mathop{\rm GL}\nolimits(n,J), H\in \mathop{\rm GL}\nolimits(n,A)\right\}.
$$

Then $[\text{GL}(n, J), \text{GL}(n, A)]$ is a normal subgroup of $\text{GL}(n, J)$ for each natural number n. Define

$$
K_1^{\text{alg}}(A, J) = \lim_{n \to \infty} \frac{\text{GL}(n, J)}{[\text{GL}(n, J), \text{GL}(n, A)]}.
$$

Let R(n, J) denote the set of smooth paths $\gamma : [0,1] \rightarrow GL(n, J)$ with the property that $\gamma(0) = 1$, and similarly define R(n, A). These sets are groups under pointwise multiplication, and

$$
[\mathcal{R}(n,J),\mathcal{R}(n,A)] = \{ \gamma \beta \gamma^{-1} \beta^{-1} : \gamma \in \mathcal{R}(n,J), \beta \in \mathcal{R}(n,A) \}
$$

is a normal subgroup of $R(n, J)$.

Define an equivalence relation \sim on R(n, J) by decreeing that $\gamma_0 \sim \gamma_1$ if there exists a smooth homotopy $\{\gamma_t\}$ from γ_0 to γ_1 such that $\gamma_t(0) = \gamma_0(0)$ and $\gamma_t(1) = \gamma_0(1)$ for all $0 \le t \le 1$. Let q denote the quotient map from $R(n, J)$ to the set of equivalence classes of \sim , and set

$$
K_1^{\text{rel}}(A,J) = \lim_{n \to \infty} \frac{q(\mathcal{R}(n,J))}{q([\mathcal{R}(n,J), \mathcal{R}(n,A)])}.
$$

These four groups fit into an exact sequence

$$
K_0^{\text{top}}(J) \xrightarrow{\partial} K_1^{\text{rel}}(A, J) \xrightarrow{\theta} K_1^{\text{alg}}(A, J) \xrightarrow{\ p} K_1^{\text{top}}(J) \longrightarrow 0,
$$

with $\theta[\gamma] = [\gamma(1)^{-1}]$ and $p[g] = [g]$.

Suppose that J admits a continuous linear functional $\tau : J \to \mathbb{C}$ with the property that

$$
\tau(ja) = \tau(aj)
$$

for all j in J and a in A ; this is called a *hypertrace*.

Associated to τ is a group homomorphism $\tilde{\tau}$ from $K_I^{\text{rel}}(A, J)$ to $\mathbb C$ that is defined in the following way: let $\tilde{\epsilon}$ be an element of $R_1(1, I)$ and let $[\alpha]$ be the fined in the following way: let γ be an element of $R(1, J)$ and let $[\gamma]$ be the corresponding element of $K_1^{\text{rel}}(A, J)$. Then

$$
\widetilde{\tau}[\gamma] = -\tau \left(\int_0^1 \gamma'(t) \gamma(t)^{-1} dt \right) = -\int_0^1 \tau \left(\gamma'(t) \gamma(t)^{-1} \right) dt.
$$

Definition: Let $\underline{\tau}$: $K_0^{\text{top}}(J) \to \mathbb{C}$ be the group homomorphism induced by τ. The relative de la Harpe-Skandalis determinant associated to $τ$ is the group homomorphism

$$
\widetilde{\det}_{\tau} : \mathrm{im}(\theta) = \ker(p) \longrightarrow \frac{\mathbb{C}}{2\pi i \cdot \mathrm{im}(\underline{\tau})}
$$

that is defined as follows. Suppose g in $GL(n, J)$ has the property that its class [g] in $K_1^{\text{alg}}(A, J)$ is in the image of θ . Choose β in $R(n, J)$ so that $\beta(1) = g^{-1}$. Then

$$
\det_{\tau}[g] = \widetilde{\tau}[\beta] + 2\pi i \cdot \operatorname{im}(\underline{\tau}).
$$

If N is a type II_{∞} factor, then its trace τ is a hypertrace, and the pair $(\mathcal{N}, L^1(\tau))$ is a relative pair of Banach algebras. The group $K_1^{\text{top}}(L^1(\tau))$ is trivial whence $\text{ker}(p) = K_1^{\text{alg}}(\mathcal{N}, L^1(\tau)).$ Because the trace of any projection in $M(n, \mathcal{N})$ is real, we see that $\underline{\tau}(K_0^{\text{top}}(L^1(\tau)))$ is contained in R. Therefore, by expanding the codomain of \det_{τ} , we have the group homomorphism

$$
\widetilde{\det}_{\tau}: K_1^{\text{alg}}(\mathcal{N}, L^1(\tau)) \to \mathbb{C}/(2\pi i \cdot \mathbb{R}) = \mathbb{C}/i\mathbb{R}.
$$

Observe that the map $z + i\mathbb{R} \mapsto e^{\text{Re}(z)}$ is a group isomorphism from $\mathbb{C}/i\mathbb{R}$ to $(0, \infty)$. Composing this isomorphism with \det_{τ} , we arrive at the following definition.

Definition: The *semifinite Fuglede-Kadison determinant* for $(\mathcal{N}, L^1(\tau))$ is the group homomorphism

$$
{\det}_\tau: K_1^\textnormal{alg}(\mathcal{N}, L^1(\tau)) \longrightarrow (0, \infty)
$$

given by the formula

$$
\det_{\tau}[g] = \exp\left(\text{Re}(\widetilde{\det}_{\tau}[g])\right).
$$

The semifinite Fuglede-Kadison determinant enjoys the following properties:

- 1. $\det_{\tau}[I]=1;$
- 2. $\det_{\tau}[g_1g_2] = \det_{\tau}[g_1] \cdot \det_{\tau}[g_2]$ for all g_1, g_2 in $GL(n, L^1(\tau));$
- 3. $\det_{\tau}[hgh^{-1}] = \det_{\tau}[g]$ for all g in $GL(n, L^1(\tau))$ and h in $GL(n, \mathcal{N})$.

Toeplitz Operators on Minimal Ergodic Flows

Let X be a separable compact Hausdorff space equipped with a minimal flow $\alpha = {\alpha_t}_{t\in\mathbb{R}}$; given a point x in X and a real number t, we will write $\alpha_t(x)$ as $x + t$.

Suppose X admits a Borel probability measure μ with the following properties:

- 1. the support of μ is all of X;
- 2. the maps α_t are measure-preserving for each real number t;
- 3. α is ergodic with respect to μ ; i.e., if $Y \subseteq X$ has the property that $\alpha_t(Y) = Y$ for every real number t, then $\mu(Y) = 0$ or $\mu(Y) = 1$.

Endow R with Lebesgue measure and consider the Hilbert space $L^2(X \times \mathbb{R})$ associated with the product measure on $X \times \mathbb{R}$. Given ϕ in $C(X)$, define M_{ϕ} on $L^2(X \times \mathbb{R})$ by pointwise multiplication:

$$
(M_{\phi}h)(x,s) = \phi(x)h(x,s).
$$

Define the Hilbert transform H on $L^2(X \times \mathbb{R})$ by

$$
(Hf)(x,t) = \text{PV}\left(\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{1}{s}f(x+s,t-s)\,ds\right).
$$

Set $P = \frac{1}{2}(I+H)$. Then P is a projection; denote the range of P by $H^2(X \times \mathbb{R})$. For each ϕ in $C(X)$, define the Toeplitz operator $T_{\phi}: H^2(X\times \mathbb{R}) \to H^2(X\times \mathbb{R})$ by the formula

$$
T_{\phi} = PM_{\phi}.
$$

The Toeplitz algebra associated to the flow α on X is the C^{*}-subalgebra $\mathcal{T}(X,\alpha)$ of $\mathcal{B}(H^2(X \times \mathbb{R}))$ generated by the set $\{T_\phi : \phi \in C(X)\}.$

The semi-commutator ideal of $\mathcal{T}(X,\alpha)$ is the C^{*}-ideal $\mathcal{SC}(X,\alpha)$ of $\mathcal{T}(X,\alpha)$ generated by the set $\{T_{\phi}T_{\psi}-T_{\phi\psi}:\phi,\psi\in C(X)\}.$

There is a short exact sequence

$$
0 \longrightarrow \mathcal{SC}(X,\alpha) \longrightarrow \mathcal{T}(X,\alpha) \stackrel{\sigma}{\longrightarrow} C(X) \longrightarrow 0
$$

with the feature that $\sigma(T_{\phi}) = \phi$ for every ϕ in $C(X)$.

The short exact sequence has an isometric linear splitting ξ defined by $\xi(\phi) = T_{\phi}$. As a consequence, every element of $\mathcal{T}(X,\alpha)$ can be uniquely written in the form $T_{\phi} + S$ for some ϕ in $C(X)$ and S in $\mathcal{SC}(X, \alpha)$, and $||T_{\phi}||_{op} = ||\phi||_{\infty}$ for every ϕ in $C(X)$.

Remark: The action α on X is called *strictly ergodic* if there exists a **unique** probabilty measure on X for which the α_t are measure-preserving. The commutator ideal of $\mathcal{T}(X,\alpha)$ is contained in $\mathcal{SC}(X,\alpha)$, and if the action of α on X is strictly ergodic then these two ideals are equal. But this is not known in general.

For each real number t, define a unitary operator U_t on $L^2(X \times \mathbb{R})$ by the formula

$$
(U_t h)(x, s) = h(x + t, t - s).
$$

Let $L^{\infty}(X) \rtimes \mathbb{R}$ be the von Neumann subalgebra of $\mathcal{B}(L^2(X \times \mathbb{R}))$ generated by the M_{ϕ} and U_t .

Because the action α is ergodic with respect to the measure μ and μ has full support, $L^{\infty}(X) \rtimes \mathbb{R}$ is a type Π_{∞} factor and therefore admits a semifinite normal trace τ . The algebra $C_c(X \times \mathbb{R})$ is weakly dense in $L^{\infty}(X) \rtimes \mathbb{R}$; we scale τ so that

$$
\tau(f) = \int_X f(x,0) \, d\mu(x)
$$

for every f in $C_c(X \times \mathbb{R})$.

Define

$$
L^p(\tau)=\{F\in L^\infty(X)\rtimes \mathbb{R}:\tau\left(|F|^p\right)<\infty\}
$$

and set

$$
||S||_p = (\tau (|S|^p))^{1/p}, \quad S \in L^p(\tau).
$$

Each $L^p(\tau)$ is an ideal in $L^{\infty}(X) \rtimes \mathbb{R}$.

Holder's Inequality: If A and B are in $L^2(\tau)$, then AB is in $L^1(\tau)$, and $||AB||_1 \leq ||A||_2 ||B||_2.$

Proposition: For all S in $L^p(\tau)$ and F in $L^{\infty}(X) \rtimes \mathbb{R}$,

$$
||SF||_p \leq ||S||_p ||F||_{op}, \quad ||FS||_p \leq ||F||_{op} ||S||_p.
$$

We can decompose $L^2(X \times \mathbb{R})$ as $H^2(X \times \mathbb{R}) \oplus H^2(X \times \mathbb{R})^{\perp}$, and via this decomposition, we can view $\mathcal{B}(H^2(X \times \mathbb{R}))$ as a subalgebra of $\mathcal{B}(L^2(X \times \mathbb{R}))$:

$$
S \hookrightarrow \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}.
$$

Let $\mathcal N$ be the II_∞ factor

$$
\mathcal{N} = P(L^{\infty}(X) \rtimes \mathbb{R}) P.
$$

The trace τ on $L^{\infty}(X) \rtimes \mathbb{R}$ restricts to N.

A function ϕ in $C(X)$ is *differentiable* with respect to α if the limit

$$
\phi'(x) = \lim_{t \to 0} \frac{\phi(x+t) - \phi(x)}{t}
$$

exists for each x in X .

Let $C^1(X, \alpha)$ be the set of functions on X that are continuously differentiable with respect to α . This is a Banach algebra in the norm

$$
\|\phi\|_{C^1}=\|\phi\|_\infty+\|\phi'\|_\infty.
$$

Theorem: The semicommutator $T_{\phi}T_{\psi} - T_{\phi\psi}$ is in $L^1(\tau)$ for all ϕ and ψ in $C^1(X, \alpha)$, and

$$
||T_{\phi}T_{\psi}-T_{\phi\psi}||_1 \leq ||\phi||_{C^1} ||\psi||_{C^1}.
$$

Define

$$
\mathcal{SC}^1(X,\alpha) = \mathcal{SC}(X,\alpha) \cap L^1(\tau)
$$

$$
\mathcal{T}^1(X,\alpha) = \{T_{\phi} + S : \phi \in C^1(X), S \in \mathcal{SC}^1(X,\alpha)\}
$$

Theorem: The exact sequence

$$
0 \longrightarrow \mathcal{SC}(X,\alpha) \longrightarrow \mathcal{T}(X,\alpha) \stackrel{\sigma}{\longrightarrow} C(X) \longrightarrow 0
$$

restricts to an exact sequence of algebras

$$
0 \longrightarrow \mathcal{SC}^1(X, \alpha) \longrightarrow \mathcal{T}^1(X, \alpha) \stackrel{\sigma}{\longrightarrow} C^1(X, \alpha) \longrightarrow 0,
$$

and the linear splitting $\xi(\phi) = T_{\phi}$ restricts as well, implying that every element of $\mathcal{T}^1(X, \alpha)$ can be uniquely written in the form $T_\phi + S$ for some ϕ in $C^1(X, \alpha)$ and S in $\mathcal{SC}^1(X,\alpha)$.

Theorem: For T and W in $\mathcal{T}^1(X, \alpha)$, the additive commutator $TW - WT$ is in $L^1(\tau)$, and

$$
\tau(TW - WT) = -\frac{1}{2\pi i} \int_X \sigma(T)'(x)\sigma(W)(x) d\mu(x).
$$

Proposition: $(\mathcal{T}^1(X, \alpha), \mathcal{SC}^1(X, \alpha))$ is a relative pair of Banach algebras, and the inclusion map $\iota : (\mathcal{T}^1(X,\alpha), \mathcal{SC}^1(X,\alpha)) \to (\mathcal{N}, L^1(\tau))$ is a morphism of relative Banach pairs.

Define a map $d: GL(n, \mathcal{SC}^{1}(X, \alpha)) \to (0, \infty)$ in the following manner. Suppose that Q is an element in $GL(n, \mathcal{SC}^{1}(X, \alpha))$. Then Q determines an element of [Q] of $K_1^{\text{alg}}(\mathcal{T}^1(X,\alpha),\mathcal{SC}^1(X,\alpha))$ and $[\iota(Q)]$ is in $K_1^{\text{alg}}(\mathcal{N},L^1(\tau))$. Thus we can set

$$
d(Q) = \det_{\tau} (\iota [Q]).
$$

The map d has the following properties:

- 1. $d(I) = 1$;
- 2. $d(Q_1Q_2) = d(Q_1)d(Q_2)$ for Q_1 and Q_2 in $GL(n, \mathcal{SC}^1(X, \alpha));$
- 3. $d(GQG^{-1}) = d(Q)$ for Q in GL $(n, \mathcal{SC}^1(X, \alpha))$ and G in GL $(n, \mathcal{T}^1(X, \alpha))$.

Therefore d can be considered to be a determinant function.

Henceforth we will restrict to the situation when $n = 1$.

Let G and H be elements of $GL(1, \mathcal{T}^1(X, \alpha))$. Then

$$
\sigma(GHG^{-1}H^{-1}) = \sigma(G)\sigma(H)\sigma(G)^{-1}\sigma(H)^{-1} = 1,
$$

whence $GHG^{-1}H^{-1}$ is an element of $GL(1, \mathcal{SC}^{1}(X, \alpha)).$

Proposition: The value of $d(GHG^{-1}H^{-1})$ depends only on $\sigma(G)$ and $\sigma(H)$.

In the case where $G = e^T$ and $H = e^W$ for T and W in $\mathcal{T}^1(X, \alpha)$, we can write down a formula for $d(GHG^{-1}H^{-1})$ in terms of $\sigma(T)$ and $\sigma(W)$.

Lemma: For all T and W in $\mathcal{T}^1(X, \alpha)$,

$$
e^{T}We^{-T} = W + [T, W] + \frac{1}{2!}[T, [T, W]] + \frac{1}{3!}[T, [T, [T, W]]] + \cdots
$$

Proposition: For all T and W in $\mathcal{T}^1(X, \alpha)$,

$$
\widetilde{\det}_{\tau} \left[\iota (e^T e^W e^{-T} e^{-W}) \right] = \tau (TW - WT) + i\mathbb{R}.
$$

Proof: Define $\beta \in R(1, L^1(\tau))$ by the formula

$$
\beta(t) = e^{tW} e^T e^{-tW} e^{-T}.
$$

We compute

$$
\beta'(t)\beta(t)^{-1} = \left(We^{tW}e^T e^{-tW}e^{-T} - e^{tW}e^T We^{-tW}e^{-T} \right) e^T e^{tW}e^{-T}e^{-tW}
$$

$$
= W - e^{tW}e^TWe^{-T}e^{-tW}.
$$

Because τ is similarity invariant and because e^{tW} commutes with W, we see that

$$
\begin{aligned}\n\widetilde{\tau}[\beta] &= -\int_0^1 \tau \left(\beta'(t) \beta(t)^{-1} \right) dt \\
&= -\int_0^1 \tau \left(W - e^{tW} e^T W e^{-T} e^{-tW} \right) dt \\
&= -\int_0^1 \tau \left(e^{tW} W e^{-tW} - e^{tW} e^T W e^{-T} e^{-tW} \right) dt \\
&= -\int_0^1 \tau \left(W - e^T W e^{-T} \right) dt \\
&= -\tau \left(W - e^T W e^{-T} \right).\n\end{aligned}
$$

Use the lemma above to expand $W - e^T W e^{-T}$:

$$
W - e^T W e^{-T} = -\left([T, W] + \frac{1}{2!} [T, [T, W]] + \frac{1}{3!} [T, [T, [T, W]]] + \cdots \right).
$$

The right side of this equation converges in the norm on $\mathcal{T}^1(X,\alpha)$. Each summand is in $\mathcal{SC}^1(X,\alpha)$, the norm on $\mathcal{T}^1(X,\alpha)$ dominates the $L^1(\tau)$ norm, and τ is continuous in the $L^1(\tau)$ norm. Therefore

$$
-\tau (W - e^T W e^{-T}) = \tau ([T, W]) + \frac{1}{2!} \tau ([T, [T, W]]) + \frac{1}{3!} \tau ([T, [T, [T, W]]]) + \cdots
$$

Because τ is a hypertrace, all of the terms on the right side vanish except the first one, and thus

$$
\widetilde{\det}_{\tau} \left[\iota (e^T e^W e^{-T} e^{-W}) \right] = \widetilde{\tau}[\beta] + i \mathbb{R} = \tau (TW - WT) + i \mathbb{R}.
$$

Theorem: Let T and W be elements of $\mathcal{T}^1(X, \alpha)$. Then

$$
d(e^T e^W e^{-T} e^{-W}) = \exp\left(\frac{1}{2\pi} \int_X \text{Im}(\sigma(T)'(x)\sigma(W)(x)) d\mu(x)\right).
$$

Proof:

$$
d(e^T e^W e^{-T} e^{-W}) = \det_{\tau} (\iota [e^T e^W e^{-T} e^{-W}])
$$

= $\exp(\text{Re}(\tau (TW - WT)))$
= $\exp\left(\text{Re}\left(-\frac{1}{2\pi i} \int_X \sigma(T)'(x) \sigma(W)(x) d\mu(x)\right)\right)$
= $\exp\left(\frac{1}{2\pi} \int_X \text{Im}(\sigma(T)'(x) \sigma(W)(x)) d\mu(x)\right).$

Connection to Algebraic K-Theory

We can use the previous theorem and the long exact sequence in algebraic Ktheory to construct a homomorphism from $K_2^{\text{alg}}(C^1(X, \alpha))$ to R.

Let $\partial: K_2^{\text{alg}}(C^1(X, \alpha)) \to K_1^{\text{alg}}(\mathcal{T}^1(X, \alpha), \mathcal{SC}^1(X, \alpha))$ be the connecting map from the long exact sequence in algebraic K-theory associated to the short exact sequence

$$
0 \longrightarrow \mathcal{SC}^1(X, \alpha) \longrightarrow \mathcal{T}^1(X, \alpha) \stackrel{\sigma}{\longrightarrow} C^1(X, \alpha) \longrightarrow 0.
$$

Define the group homomorphism $\Delta: K_2^{\text{alg}}(C^1(X, \alpha)) \to (0, \infty)$ to be the composition

$$
K_2^{\text{alg}}(C^1(X,\alpha)) \stackrel{\partial}{\to} K_1^{\text{alg}}(\mathcal{T}^1(X,\alpha),\mathcal{SC}^1(X,\alpha)) \stackrel{\iota_*}{\to} K_1^{\text{alg}}(\mathcal{M},L^1(\tau)) \stackrel{\det_{\tau}}{\to} (0,\infty) .
$$

Proposition: Let ϕ and ψ be in $C^1(X, \alpha)$, and let $\{e^{\phi}, e^{\psi}\}\$ denote the Steinberg symbol of e^{ϕ} and e^{ψ} . Then

$$
\partial \{e^{\phi}, e^{\psi}\} = \left[e^{T_{\phi}}e^{T_{\psi}}e^{-T_{\phi}}e^{-T_{\psi}}\right].
$$

Theorem: Let ϕ and ψ be in $C^1(X, \alpha)$. Then

$$
\Delta\left(\{e^{\phi}, e^{\psi}\}\right) = \exp\left(\frac{1}{2\pi} \int_X \text{Im}\left(\phi'(x)\psi(x)\right) d\mu(x)\right).
$$

Proof:

$$
\Delta\left(\{e^{\phi}, e^{\psi}\}\right) = \det_{\tau} \left(\iota \left[e^{T_{\phi}} e^{T_{\psi}} e^{-T_{\phi}} e^{-T_{\psi}} \right] \right)
$$

$$
= \exp\left(\frac{1}{2\pi} \int_{X} \text{Im}(\sigma(T)'(x)\sigma(W)(x) d\mu(x)) \right).
$$