Traces, Determinants, and Toeplitz Operators

Let A be an n X n matrix with complex entries:

aix aiz - Qip
Ga21 Az - Q2p
A =
an1l An2 e Ann
Then
n
trA = E (0771
i=1
and

det A= (Sig00)a10(1)020(2) " ** Ano(n)-
€Sy

Properties of trace: For A and B in M(n,C) and S in GL(n, C),
o tr(A+ B) =tr A+ trB;
o tr(AB) = tr(BA);
o tr(SAS™Y) = tr 4;

e The trace of A is the sum of the eigenvalues of A.

Properties of determinant:
o det(AB) = det(BA) = (det A)(det B);
o det(SAS™!) = det 4;

e The determinant of A is the product of the eigenvalues of A.

Define the exponential of A as

SN
exp A := Z EAk'
k=0 "~

Warning: In general exp(A + B) # (exp A)(exp B) unless A and B commute.

Theorem: det(exp A) = e 4



Let V be a complex vector space equipped with an inner product. This is a
function (-,-) : V' x V — C such that for all elements v, w, and w in V" and all
complex numbers o and S,

An orthonormal basis for V is a vector space basis {ex}y_; for V with the
additional properties

o (ep,er)=1for 1 <k <m;

o (ep,ep) =0 for k # 4.

Let A be a linear transformation of V. Then

trA= Z (Aey, ex)

k=1

and

det A = Z (signo) <Ael, eg(l)> <A€2, eg(g)> e <Aen, eg(n)> .
gESy

These quantities are independent of the choice of orthonormal basis.

The adjoint of A is the linear transformation determined by the equation
(Av,w) = (v, A*w)

for all v and w in V.

If we write A as a matrix with respect to an orthonormal basis, then A* is the

complex conjugate transpose of A; i.e., the (4, j) entry of A* is @j;. Thus

tr A* =tr A, det A* = det A.



Now let V' be an infinite-dimensional complex inner product space and define
a norm ||v|| := /{(v,v) for every v in V. We say that V is complete if every
Cauchy sequence with respect to this norm is convergent. In this case we will
use the letter H to denote our complex inner product space, and we call it a
Hilbert space.

We will only consider separable Hilbert spaces. This means that H contains a
countably infinite subset {e} with the following properties:

e (ep,ex) =1 for all k;

L] <ek,6g> =0 for k # E;

o v = (v, ex)ey, for every v in H.
k=1

Warning: the set {e;} is not a vector space basis!

Let A be a linear transformation of H. We say that A is bounded if

Av
|A]] := sup { ”HUH” tvF# 0} < 00.

We will call a bounded linear transformation of H an operator on H.

The collection of all operators on H is an algebra (closed under addition, mul-
tiplication [composition], scalar multiplication), and is denoted B(#H).

How do we define trace for operators on H?

Naive idea: choose an orthonormal basis {ej} for H and set

trA = Z (Aey, ex) .

k=1

Problem 1: The right-hand side does not necessarily converge.

Example:
trl = Z (Ieg,er) = Z ek, ex) = Zl = 00.
k=1 k=1 k=1

So not every operator has a well-defined trace.

Problem 2: Even if the right-hand side does converge, its value may depend on
the choice of orthonormal basis.



An operator P on H is positive if (Pv,v) > 0 for all v in H.

Example: Let A be any operator on H. Then A*A is positive, because

(A* Av,v) = (Av, Av) > 0.

In fact, every positive operator P has this form for some operator A.

oo
If P is positive, then Z (Pey, er) is in [0, 00] and is independent of the choice

k=1
of orthonormal basis.

Every positive operator P has a positive square root operator v/P. Define
|A] .=V A*A.

Example: Take

—E+% R R
A:
Then
20 12
5 5
A*A =
12 36
5 5
Let
3 _4
5 5
S:
4 3
5 5
Then
1/ 4% (9 0
ss= (3 9),
whence
3 0
\/717*:
S—1(A*A)S (0 2>
and thus
59 12
25 25
|A\:S< S*l(A*A)S> o
12 66
25 25



Define .
LYH) = {A € B(H): Z (|Alek, ex) < oo} :

k=1

The set £1(H) is an ideal in B(H) and is called the ideal of trace-class operators
on H. For Ain £(#H) we can define tr A in the naive way we originally proposed:

trA= Z (Aey, er) .
k=1

Properties of tr:
o tr(A+ B)=trA+tr B for A and B in L}(H);
e tr(AB) = tr(BA) for A in £L(H) and B in B(H);
o tr(SAS™!) =tr A for Ain £L}(H) and S in B(H) invertible;
e tr A is the sum of the eigenvalues of A for all A in £L1(H).

Remark: This last statement, known as Lidskii’s theorem, was not proved until
1959.

How do we define the determinant?

For ||A|| < 1, we can define the logarithm of I + A by the infinite series

X 1\yn+1
log(I+A) = Z ( 171 A"
n=1

If A is trace class, then for y € C with sufficiently small modulus, the operator
log(1 + pA) is also trace class, so we can define

det(I + UA) — etr(log(IJruA))
and then extend by analytic continuation, so that the domain of det is
GL(L, (I +£'(H))),

the multiplicative group of invertible elements of B(#) of the form I + L for
some L in L(H).



Properties of det:
e det(AB) = (det A)(det B) for A and B in GL(1,1 + L1(H));
o det A= = (det A)~! for A in GL(1, (I + LY (H));
o det(SAS™!) =det A for A in GL(1, (I +LY(#H)) and S in B(H) invertible;
e det A is the product of the eigenvalues of A for A in GL(1, 1 + L (H)).
These quantities are hard to compute directly, especially the determinant! How-

ever, in certain cases of geometric and/or topological interest, there are other
ways to proceed.

Example 1:

Suppose K : [a,b] x [a,b] — C is continuous and define A in B(L?[a,b]) by the
formula

b
(Af)(x) = / K(x.9)f(y) dy.

This is an example of a compact operator. It is not always trace class (in fact,
it is an open problem to find necessary and sufficient conditions on K so that
A is trace class), but if A, is trace class, then

b
trA:/ K(z,z)dx.

We can also express det(I + A) in terms of K. For each n-tuple (x1,za,...,2,)
in [a, b], define

K(zy,21) K(zi,22) -+ K(x1,2)

K(zg,21) K(zo,z2) -+ K(xo,2,)
Kn(lfl,l'g,...,xn):det . . . .

K(xnaxl) K(H]‘n,ﬂfg) K(a:n,xn)

Then

© 1 b b
det(I—i—A)—l—i—Zln!/a /a K, (x1,29,...,2,)dxy dxo . .. day,.
n=



Example 2:
Consider the Hilbert space L?(S') with the inner product

27

gy =— [ £0)900)db.

- 21 0
This Hilbert space has orthonormal basis
{e"?:n ez} ={":neclZ}

Let C(S') denote the algebra of continuous complex-valued functions on the
circle. For each ¢ in C(S'), define an operator M, on L*(S') via pointwise
multiplication:

(Mg f)(x) = o(x) f(x).
Next, let H?(S') be the Hilbert subspace of L?(S') whose orthonormal basis is
{z":n>0}.

An alternate description of H?(S!) is the Hilbert subspace of the elements of
L?(S1) that extend to analytic functions on the disk {z € C: |z| < 1}.

Define the orthogonal projection P : L*(S') — H?(S') by

n—=—oo

Then for each ¢ in C(T), define the Toeplitz operator T, on H?*(S') by the
formula
Ty = PM,.

Properties of Toeplitz operators: For ¢ and v in C(S*) and X in C,

® Tory =Ty +Ty;

L] T)\¢ = )\T¢;
Ty # TyTy in general, but for ¢ and 1 in C*°(S?), we have

T¢Tw — TwT(z, € El (H)

Surprisingly (at first), the trace of this quantity can be nonzero. This is because
T4Ty and TyTy are typically not trace class operators, but their difference is.



Example:
T,-3T,s(2")=2"foralln >0

0 0<n<3
2" n>3

TZSTzfa (Zn) = {

Therefore
tr (Tzfsta — TZSTZ—S) = 3.
In general,
n ifm+n=0

tr (TomTyn — TonTym ) =
(Ten T e Tem) {O otherwise.

Also observe that

1 2r ) 1 27 . . if =0
— ezmed(ezne) = / inezmeemﬂ do = noitm+ n
2wt Jy 2w Jo 0 otherwise.

Theorem: For ¢ and 1 in C>°(S?),

1
tr (T¢T¢ - T’PTd)) = 271'1 /Sl¢d’¢

Proof: Write ¢ and v in terms of the basis {z" : n > 0} and combine the
linearity of the trace and the integral with the computations in the example
above. O

We can generalize this result somewhat. Define

T ={T,+L:¢pcC>®(S"),Le L' (H*(S")}.

Then there exists a short exact sequence

0 —— LY (H?(SY)) T —7—= (C®(S§Y) ——0,
and the symbol map o : T — C>(S') is given by the formula o(T, + L) = ¢.
Theorem: For T and W in T°°,

tr (TW — WT) = % /0 " o(T)(0)o (W) (6) db



Now let’s look at the determinant.

Take invertible elements T and W in 7°°, and set ¢ = o(7T) and ¢ = o(W).
Then

o (TWT'W™h) =gy~ g™t =1,

whence Ty Ty T, ' T, " is in [ + L' (H?(S")).

det(TWT'W™1) =77

Here is an answer in a very special case. If A is an element of 7°°, then exp A
is an invertible element of 7°° with inverse exp(—A).

Theorem: For A and B in 7°°,

1

det (exp Aexp Bexp(—A) exp(—B)) = exp <2z
T

2m
/ o (A)(0)o(BY (6) d9) .
0
Let’s look at this from a different point of view.
Let H be a Hilbert space. Then H™ is also a Hilbert space:

((v1,v2, ..oy ), (W1, Way ooy wy)) = (V1,w1) + (V2,wa) + -+ + (Vn, Wy ) .

We can view elements of B(H") as elements of M(n, B(#)). By extending the
notion of symbol in the obvious way, we have a short exact sequence

0 —— LY ((H?*(S1))") ——— M(n, T>®) —=— M(n,C>(S')) ——0.

Suppose ¢ and v are arbitrary invertible elements of C°°(S'). Then we can find
matrices R and S in GL(3,7°°) such that

¢ 0 0
o(R)=10 o1 0
0 0 1
and
P 0 0
o(S)=10 1 0
0 0 ot



For example, we can choose

20y —TyTy1Ty TyTyr—1 0
R = I - T¢—1T¢ T¢—1 O
0 0 1

and
2Ty —TyTy—Ty 0 TyTy— —1
S = 0 I 0
I—TyTy 0 Ty

We infer from the short exact sequence above that the operator RSR™'S~! is
determinant-class. Furthermore, the value of this determinant does not depend
on the choice of R and S satisfying the properties above - the determinant of
RSR~'S~! only depends on ¢ and .

Suppose that ¢ and 1 are restrictions of meromorphic functions (which we also
denote ¢ and 1) defined in a neighborhood of the closed unit disk such that
neither ¢ nor ¥ has zeros or poles on the unit circle. For each point z in the
open unit disk I, define

m  if ¢ has a zero of order m at z
v(¢,z) =< —m if ¢ has a pole of order m at z
0 if ¢ has neither a zero nor a pole at z,

and similarly define v(¢, z). The quantity

o(2)
(e, D)
dirm (1) B(w)?@:2)

is called the tame symbol of ¢ and ¢ at z and is denoted (¢, )..

Example:
23— 322 . .
(z) = S double zero at 0, simple zero at 3, simple pole at —1/2
z

2z -1
P(z) = & 3 simple zero at 1/2, triple pole at 0
z

10



oy ()
(@, 9)o = lim | (=1) W

2w—+1

_ (2w —-1)? wS(w - 3)3
Twh0 Wb (2w+1)3
(2w —1)*(w — 3)3

= 1'
wlino (2U}+1)3
=27
(—1)(0) (zwgl)_l
_ = 1 —1)\" — w7 -
(¢J/’) 1/2 w;fll/2 ( ) w2 (w—3) 0
( 2w+1 )
w3
= lim
w——1/2 2w — 1
_ L
16
0D (211;;1)0
= 1 -1 -\ wd
((1571/))1/2 wir{l/z ( ) w2 (w—3) 1
( 2w—+1 )
2w+ 1
= lim —
w172 w2(w — 3)
__16
5

We will not compute (¢, )3 for reasons that will be become clear in a minute.
For all other complex numbers z, we see that (¢,), = 1.

det(RSR™'S™Y) = [] (6, 4)7 "

zeD

Remark 1: Suppose that Ty and Ty, are invertible. Then we can take

T, 0 0
R=[0 T,;' 0
0 0 I

11



and

T, 0 0
s={o 1 o],

-1

0 0 T

whence
T,TyT, ' Tt 00
det(RSR™1S71) = det 0 I 0 :det(T¢T¢T¢;1T51).

0 0 I

Remark 2: In fact, det(RSR™1S~!) only depends on the Steinberg symbol {¢, )}
of ¢ and 9. This is an element of the algebraic K-theory group K»(C*(S1)),
and we can use the above theorem to prove that certain Steinberg symbols are
nontrivial.

Surprising fact that comes out of this circle of ideas: if both ¢ and ¥ :=1— ¢
are invertible, then det(RSR™1571) = 1.

12



von Neumann Algebras

Definition: Let H be a Hilbert space. A von Neumann algebra on H is subal-
gebra A of B(H) such that

e A is a x-algebra; that is, if A is in A, then A* is in A
e A is closed under the topology of pointwise convergence
Example 1: Let X be a locally compact Hausdorff space and let u is a Borel mea-

sure on X. Then L*° (X, p) is an abelian von Neumann algebra. Furthermore,
every abelian von Neumann algebra arises in this manner.

Example 2: Let G be a discrete group. For each g in G, define )\, : 2(G) —
??(@) by the formula A(x) = gx for every x in G. Then L*(G) is the von
Neumann algebra on ¢2(G) generated by the set {)\, : g € G}.

Open Question: Let F,, denote the free group on n generators. Is L (F3)
isomorphic to L>(F3)?

A von Neumann algebra A is a factor if its center is C.

Theorem: Every factor admits a trace on projections, and the range of this
trace is exactly one of the following sets.

e {1,2,3,....,n}, 1<n<oco type I,, factor
e [0,1] type II; factor
e [0,00) type Il factor

e {0,1} type III factor

13



Examples:

o M(n,C) is a type I, factor, 1 <n < oco.

If H is separable, then B(H) is a I, factor.

e If G is a group with the property that every nontrivial conjugacy class is
infinite, then L*°(G) is a II; factor.

tr(Z ag)\g) = Q¢

geG
e L>®°(R) is a I, factor.

w(f) = [ f)ds

Type III factors: you don’t want to know.

14



Fun With K-theory!

Definition: Let A be a unital Banach algebra with norm |[|-| , and let J be a
not necessarily closed ideal in A. We say that (A, J) is a relative pair of Banach
algebras if there exists a norm |-|| ; on J such that

1. the ideal J is a Banach algebra in the norm ||| ;;

2. for all j in J,
170 < 131 a3

3. for all ¢ and bin A and j in J,

lagoll ; < llall A ll511 /110l 4-

A morphism between relative Banach pairs (A,.J) and (A,.J) is a continuous
algebra map w : (4, |-]4) — (A, || 7) that restricts to a continuous map wj; :

(LIH1L) = Tl p)-
Prototypical example: a type I, factor.

If (A,J) is a relative pair of Banach algebras, then (M(n, A), M(n, J)) is also a
relative pair of Banach algebras if we define

n

||a||M(n,A) = Z lakell 4-
k=1
and similarly define [|j[lyy(,, ;) for j in M(n, J).

For each natural number n, define

GL(n,J) ={G € GL(n,J") : G — I,, € M(n, J)}.
Let GL(n, J)o denote the connected component of the identity, and define

. GL(n,J)
Ko =1 7
)= i e

15



Next, define
[GL(n, J),GL(n, A)] = {GHG'H ' : G € GL(n, J),H € GL(n, A)} .

Then [GL(n,J), GL(n, A)] is a normal subgroup of GL(n, J) for each natural
number n. Define

_ GL(n, J)
alg —
K75(4,J) = lim. [GL(n, J), GL(n, A)]’

Let R(n,J) denote the set of smooth paths v : [0,1] — GL(n,J) with the
property that v(0) = 1, and similarly define R(n, A). These sets are groups
under pointwise multiplication, and

[R(n,J),R(n, A)] = {7877 '87" : v €R(n, ), 8 € R(n, A)}

is a normal subgroup of R(n, J).

Define an equivalence relation ~ on R(n, J) by decreeing that vy ~ ~; if there
exists a smooth homotopy {v:} from ~y to 71 such that v(0) = 70(0) and
(1) = (1) for all 0 < ¢ < 1. Let ¢ denote the quotient map from R(n,J) to
the set of equivalence classes of ~, and set

rel = lim q(R(n,J))
KAL) = 00, SR, 7), R, D))

These four groups fit into an exact sequence
K (J) —— Ki9(A, ) —"— K"(4, ]) —"— K} () ——>0,

with 6[y] = [y(1)~'] and p[g] = [g].

16



Suppose that J admits a continuous linear functional 7 : J — C with the
property that

T(ja) = 7(aj)
for all j in J and a in A; this is called a hypertrace.

Associated to 7 is a group homomorphism 7 from KI°(A,.J) to C that is de-
fined in the following way: let v be an element of R(1,.J) and let [y] be the
corresponding element of K1®/(A, J). Then

o ( / e dt) - ()

Definition: Let 7 : K;°?(J) — C be the group homomorphism induced by
7. The relative de la Harpe-Skandalis determinant associated to 7 is the group
homomorphism

C

det, : im(f) = ker(p) — i m(D)

that is defined as follows. Suppose g in GL(n, J) has the property that its class
[g] in K™8(A,.J) is in the image of 6. Choose 8 in R(n,J) so that 8(1) = g~ L.
Then

det.[g] = 7[B] + 2mi - im(z).

If NV is a type I, factor, then its trace 7 is a hypertrace, and the pair (N, L!(7))
is a relative pair of Banach algebras. The group K[°P(L'(7)) is trivial whence

ker(p) = KM8(N,L(r)). Because the trace of any projection in M(n, N) is
real, we see that 7(K °P(L'(7))) is contained in R. Therefore, by expanding the

codomain of dAe/tT, we have the group homomorphism
det, : K8\, L'(7)) — C/(2mi - R) = C/iR.

Observe that the map z + iR — eR¢(*) is a group isomorphism from C/iR

to (0,00). Composing this isomorphism with (Tc;uT7 we arrive at the following
definition.

Definition: The semifinite Fuglede-Kadison determinant for (N, L'(7)) is the
group homomorphism

det, : KM(N, L'(1)) — (0, 00)

given by the formula

det.[g] = exp (Re(det,[g]) ).

17



The semifinite Fuglede-Kadison determinant enjoys the following properties:
1. det.[I] = 1;
2. det,[g1ga] = det,[g1] - det,[go] for all g1, go in GL(n, L(7));

3. det,[hgh™'] = det,[g] for all g in GL(n, L'(7)) and h in GL(n,N).

18



Toeplitz Operators on Minimal Ergodic Flows

Let X be a separable compact Hausdorff space equipped with a minimal flow
a = {at}ier; given a point z in X and a real number ¢, we will write ay(z) as
T +t.

Suppose X admits a Borel probability measure p with the following properties:

1. the support of u is all of X;
2. the maps a; are measure-preserving for each real number ¢;

3. « is ergodic with respect to u; i.e., if Y C X has the property that
a,(Y) =Y for every real number ¢, then u(Y) =0 or u(Y) =1.

Endow R with Lebesgue measure and consider the Hilbert space L?(X x R)
associated with the product measure on X x R. Given ¢ in C'(X), define M,
on L?(X x R) by pointwise multiplication:

(Mgh)(z,s) = ¢p(x)h(z, s).
Define the Hilbert transform H on L?(X x R) by
) =PV (5 [ St si-s)a
Z,t) = m.ioosxs,ss.

Set P = 2(I+H). Then P is a projection; denote the range of P by H*(X xR).
For each ¢ in C(X), define the Toeplitz operator Ty : H?(X x R) — H?(X x R)
by the formula

T, = PM,.

19



The Toeplitz algebra associated to the flow c on X is the C*-subalgebra T (X, «)
of B(H?(X x R)) generated by the set {T, : ¢ € C(X)}.

The semi-commutator ideal of T (X, ) is the C*-ideal SC(X,a) of T(X,«)
generated by the set {TpTy — Ty : ¢, € C(X)}.

There is a short exact sequence
0 —8C(X,a) ——=T(X,a) — 2= C(X) ——=0
with the feature that o(Ty) = ¢ for every ¢ in C(X).

The short exact sequence has an isometric linear splitting £ defined by £(¢) = T.
As a consequence, every element of 7 (X, «) can be uniquely written in the form
Ty + S for some ¢ in C(X) and S in SC(X, ), and [[Tyll,, = 4], for every ¢
in C(X).

Remark: The action « on X is called strictly ergodic if there exists a unique
probabilty measure on X for which the «; are measure-preserving. The com-
mutator ideal of T(X,«a) is contained in SC(X,a), and if the action of a on
X is strictly ergodic then these two ideals are equal. But this is not known in
general.

For each real number ¢, define a unitary operator U; on L?(X x R) by the
formula

(Uih)(z,s) = h(x 4+ t,t — s).

Let L>=(X) x R be the von Neumann subalgebra of B(L?(X x R)) generated by
the My and Uy.

Because the action « is ergodic with respect to the measure g and p has full
support, L>®(X) x R is a type Il factor and therefore admits a semifinite

normal trace 7. The algebra C.(X x R) is weakly dense in L>°(X) xR; we scale
7 so that

(f) = /X £, 0) du(x)

for every f in C.(X x R).

20



Define
LP(r)={F e L¥(X) xR:7(|F") < 0o}

and set Y
ISI, = (= (IS|")) "*, S € LP(r).

Each LP(7) is an ideal in L>°(X) x R.

Holder’s Inequality: If A and B are in L?(7), then AB is in L!(7), and
[AB; < [|All5]|Bll,-

Proposition: For all S in LP(7) and F in L>(X) x R,

ISEl, < IS11E 0 1S, < 1E o 1S1,-

op?

We can decompose L?(X x R) as H?(X x R) @ H?(X x R)*:, and via this
decomposition, we can view B(H?(X x R)) as a subalgebra of B(L*(X x R)):

S 0
S%(O 0)'

N =P (L®(X) x R) P,

Let N be the II,, factor

The trace 7 on L>°(X) x R restricts to N.
A function ¢ in C(X) is differentiable with respect to « if the limit

)ty P )

t—0 t

exists for each = in X.

Let C1(X, ) be the set of functions on X that are continuously differentiable
with respect to a. This is a Banach algebra in the norm

18llcr = 1lo + 19" lloo-

Theorem: The semicommutator TyTy — Tyy is in L!(7) for all ¢ and ¢ in
CY(X,a), and
1T6Ty = Toplly < l@llcallllcn-

21



Define
SC'(X,a) =SC(X,a)N L' (7)

THX, ) ={Ty+S: ¢ € C(X),S €SC(X,a)}

Theorem: The exact sequence

0 —SC(X,a) —T(X,a) —2—=C(X) —=0

restricts to an exact sequence of algebras

0—SCHX,a) ——T'(X,a) CYX,a) ——0,

and the linear splitting {(¢) = T restricts as well, implying that every element
of TH(X, ) can be uniquely written in the form T} + S for some ¢ in C* (X, «)
and S in SC'(X, ).

Theorem: For T' and W in T*(X, ), the additive commutator TW — WT is
in L(7), and

o(T) ()0 (W)(x) dp(z).

Proposition: (7'(X,a),SC'(X,a)) is a relative pair of Banach algebras, and
the inclusion map ¢ : (TH(X,a),SC*(X,a)) — (N,L'(7)) is a morphism of
relative Banach pairs.

Define a map d : GL(n, SC* (X, a)) — (0,00) in the following manner. Suppose
that @ is an element in GL(n,SC'(X,«)). Then Q determines an element of
[Q] of K™&(T1(X,),SCH(X, ) and [1(Q)] is in K™&(N, L'(7)). Thus we can
set
d(Q) = det(¢[Q])-
The map d has the following properties:
1.d(I)=1;
d(Q1Q2) = d(Q1)d(Q2) for Q1 and Q5 in GL(n,SC* (X, a));
d(GQG™") = d(Q) for Q in GL(n,SC*(X,«)) and G in GL(n, T*(X, )).

Therefore d can be considered to be a determinant function.

22



Henceforth we will restrict to the situation when n = 1.
Let G and H be elements of GL(1,7(X,«)). Then
o(GHG'H™) = 0(Q)o(H)o(G) to(H) ™ =1,
whence GHG~'H~! is an element of GL(1,SC' (X, a)).
Proposition: The value of d(GHG~'H ') depends only on ¢(G) and o(H).

In the case where G = eT and H = " for T and W in T*(X, ), we can write
down a formula for d(GHG™1H™1) in terms of o(T) and o(W).
Lemma: For all T and W in T}(X, «),

. ST, W) + l[T, [T, [T, W] + - --

T
e We ™ =W+ [T,W]+ ol 3

Proposition: For all T and W in T(X, ),

det, [(eTeVe Te W) = 7(TW — WT) + iR.

Proof: Define 8 € R(1, L*(7)) by the formula

B(t) — etWETe_tWB_T.

We compute

BB = (WetWeTeftwefT _ etWeTweftWefT) oL tW o=T o—tW

=W —eWeTWe Te W,

tW

Because 7 is similarity invariant and because e commutes with W, we see

that

—

t)~')at

\]

[a
\‘

tW TW€ 7tW) dt

1

7_ tWW —tW tW TW -T —tW) dt

1
7' e*T) dt

o\o\o\o\

T

—~

W — eWeT).
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Use the lemma above to expand W — e We=7T:
Ty T _ 1 1
W—e We [T, W]+ 5[ [T W+ 5[ [T [T W)

The right side of this equation converges in the norm on 7*(X,«). Each sum-
mand is in SC*(X, a), the norm on 7'(X, «) dominates the L*(7) norm, and 7
is continuous in the L!(7) norm. Therefore

—r (W = W) = (W) 4 o7 (1T, [T W) + g (T 7, [T, W)+

Because 7 is a hypertrace, all of the terms on the right side vanish except the
first one, and thus

det, [(eTeW e Te™W)] = 7[B] + iR = 7(TW — WT) + iR.
Theorem: Let 7' and W be elements of 7'(X, «). Then

d(cTeV e=TeW) — exp (;ﬂ /X Im(o(T) (2)o (W)(x)) du(a;)).

Proof:

d(e"eVe Te™V) = det, (tle"e™e e ™))

= exp(Re(r(TW — WT)))

exp( < QLM/XO' (:L’)G(W)(I)dﬂ(x)>)
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Connection to Algebraic K-Theory

We can use the previous theorem and the long exact sequence in algebraic K-
theory to construct a homomorphism from K2'8(C'(X,a)) to R.

Let 8 : K28(CY(X,q)) — K™5(TY(X,a),SC (X, )) be the connecting map
from the long exact sequence in algebraic K-theory associated to the short
exact sequence

0——SCY(X,a) ——=T'(X,a) — 2= CY(X,a) —> 0.

Define the group homomorphism A : K28(C1(X,a)) — (0,00) to be the com-
position

det -

K§®(CH(X, ) + K{'®(T(X, @), SC' (X, ) = K{"¥(M, L} (7)) (0,00) .

Proposition: Let ¢ and ¢ be in C*(X, «), and let {e?, ¥} denote the Steinberg
symbol of e? and e¥. Then

a{e¢,e¢} — [6T¢€Twe—T¢e—Tw] .

Theorem: Let ¢ and v be in C*(X,«). Then

Ate ey =exo (55 [ (@ @) duta))

Proof:
A ({e?,e?}) = det, (¢ [eTeTveToe™Tv])

—exp (5 [ (o) @o(W)e) duta) )
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