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Harmonic Analysis

1 Study functions C f−→ C by breaking them up into frequencies

Many real-world applications: Signal-processing, data compression, etc.

2 Interested in functions f with nice symmetry properties

Let f : H → C
Have Möbius transformations of H: x + iy 7→ ax+biy

c−diy for

A =

(
a b
c d

)
∈ SL2(R)

Say f is a weight-k modular form if f (A · z) = (cz + d)k f (z), all A
⇒ f (z) =

∑
n ane

2πniz = “Fourier series”

3 Ramanujan: The coefficients an carry subtle information about prime
numbers

4 Upshot: Can study prime numbers (arithmetic) using harmonic
analysis

5 Generalization: Functions f on different (higher-dimensional) spaces
instead of H with new symmetries
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p-adic numbers

Isom+(H) = SL2(R), f has nice transformation properties under these
symmetries

To study behavior of Fourier coefficients of f at a prime p, need to
introduce p-adic numbers ⇝ SL2(Qp)

1 Q with Euclidean metric ⇝ (completing) R
R = connected, locally compact

2 Q with |pm · a
b |p = p−m metric ⇝ (completing) Qp

1 + p + p2 + p3 + · · · ∈ Qp

Qp = totally disconnected, locally compact
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3-adic numbers
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3-adic numbers
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p-adic groups

1 SL2(Qp) ↔ G (Qp), G = “reductive group”
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p-adic groups

G = GLn+1, SLn+1, PGLn+1, GL(D), U(n + 1), SU(n + 1), . . .

1 “Arithmetic structure” of G ⇝ + diagram automorphisms = based
root datum Φ

An with trivial automorphism: GLn+1, SLn+1, PGLn+1, GL(D), . . .
An with nontrivial involution: U(n + 1), SU(n + 1), . . .
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The local Langlands correspondence

1 Key idea (Langlands): Can relate representations of G (Qp) to
symmetries of solutions of polynomials over Qp (also for

Qp = R)⇝ Gal(Qp/Qp)

2 How to generalize to G ̸= GLn?

3 G ⇝ Φ = BRD, Φ∨ ⇝ LG (C)
SLn(Qp)⇝ PGLn(C)
SU(n)(Qp)⇝ PGLn(C) with involution
Sp2n(Qp)⇝ SO2n+1(C)
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3 How to generalize to G ̸= GLn?

4 G ⇝ Φ = BRD, Φ∨ ⇝ LG (C)
SLn(Qp)⇝ PGLn(C)
SU(n)(Qp)⇝ PGLn(C) with involution
Sp2n(Qp)⇝ SO2n+1(C)

Dillery, Peter (UMD) The local Langlands program TCU April 8, 2025 11 / 19



The local Langlands correspondence

1 Key idea (Langlands): Can relate representations of G (Qp) to
symmetries of solutions of polynomials over Qp (also for

Qp = R)⇝ Gal(Qp/Qp)

2 Conjecture: There is a map

{Irreducible smooth representations of G (Qp)}/Isom
LL−→

{L-parameters WQp × SL2(C) → LG}/Conjugacy

3 How to generalize to G ̸= GLn?

4 G ⇝ Φ = BRD, Φ∨ ⇝ LG (C)
SLn(Qp)⇝ PGLn(C)
SU(n)(Qp)⇝ PGLn(C) with involution
Sp2n(Qp)⇝ SO2n+1(C)

Dillery, Peter (UMD) The local Langlands program TCU April 8, 2025 11 / 19



The local Langlands correspondence

1 Conjecture: There is a map

{Irreducible smooth representations of G (Qp)}/Isom
LL−→

{L-parameters WQp × SL2(C)
ϕ−→ LG}/Conjugacy

2 Not injective!
Goal: Upgrade this to a bijection

try to use to parametrize LL−1(ϕ)
doesn’t work unless G is “nice”

3 BRD Φ⇝ [G ]

Every [G ] contains a “nice” G∗

Every G ∈ [G ] has the same L-parameters
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A numerical example

1 BRD Φ⇝ [G ]

[G ] contains a “nice” G∗

Every G ∈ [G ] has the same L-parameters

2 Qp = R, G ∗ = U(n, n), WR
ϕ−→ GL2n(C) “discrete”

[U(n, n)] = {U(p, q)|p + q = 2n}
LU(p, q) = GL2n(C) (with involution)

3 Langlands (1989): Constructed LL over R ⇝ Know LL−1
U(p,q)(ϕ)

| LL−1
U(p,q)(ϕ) |=

(
p+q
q

)
4 ⇝ Should try to parametrize fibers of LL for all G ∈ [G ∗] at the same

time! (using Z
Ĝ
(ϕ))

U(p, q) = U(q, p)
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Refined local Langlands

1 Should try to parametrize fibers LL−1
G (ϕ) for all G ∈ [G ∗] at the same

time! (using Z
Ĝ
(ϕ))

2 Conjecture (Vogan, Kottwitz, Kaletha, D.): Have a bijection for
fixed ϕ, ⊔

x∈H1(E?,G∗)bas

LL−1
G∗
x
(ϕ)

ιw−→ Irr(S?)

S? ↔ ZĜ (ϕ)
x ∈ H1(E?,G∗)bas ↔ G∗

x ∈ [G∗]

3 H1(EKott,G ∗) ↔
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Ĝ
(ϕ))

2 Conjecture (Vogan, Kottwitz, Kaletha, D.): Have a bijection for
fixed ϕ, ⊔

x∈H1(E?,G∗)bas

LL−1
G∗
x
(ϕ)

ιw−→ Irr(S?)

S? ↔ ZĜ (ϕ)
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Representation theory and the local Langlands

1 Rep(M) → Rep(G ), M = “Levi subgroup”

π ∈ Irr(G ) ⇝ (M, σ), σ supercuspidal
Does LL(π) “see” (M, σ)?
Yes— LL(π)ss factors through LM → LG
Refined version?

2 Theorem (Bertoloni Meli, Oi): Assuming refined conjecture, have
bijection ⊔

x∈H1(EKott,G∗)

LL−1
G∗
x
(ϕ)

ιw−→ Irr(Z
Ĝ
(ϕ))

Includes all Levi’s G∗
x = M ⊆ G∗ through which ϕ factors
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Representation theory, continued

1 What about supercuspidals?
2 Kaletha (via Yu): (T , θ) “elliptic pair” ⇝ π(T ,θ) supercuspidal

LL(π(T ,θ)) is discrete

factors through LT± → LG
T = “twisted Levi subgroup”

3 Theorem (Schwein, D.): (Qp ̸= R) Assuming refined conjecture
(discrete ϕ), have bijection⊔

x∈H1(EKal,G∗)

JLL−1
G∗
x
(ϕ)KW (G ,G∗

x )(F )
ιw−→ (X+

ϕ (Ĝ ) � Z
Ĝ
(ϕ))♮

Includes all twisted Levi’s G∗
x = M ⊆ G∗ through which ϕ factors
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ϕ (Ĝ ) � Z
Ĝ
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Ĝ
(ϕ))♮

Includes all twisted Levi’s G∗
x = M ⊆ G∗ through which ϕ factors

Dillery, Peter (UMD) The local Langlands program TCU April 8, 2025 16 / 19



Representation theory, continued

1 What about supercuspidals?
2 Kaletha (via Yu): (T , θ) “elliptic pair” ⇝ π(T ,θ) supercuspidal

LL(π(T ,θ)) is discrete

factors through LT± → LG
T = “twisted Levi subgroup”

3 Theorem (Schwein, D.): (Qp ̸= R) Assuming refined conjecture
(discrete ϕ), have bijection⊔

x∈H1(EKal,G∗)

JLL−1
G∗
x
(ϕ)KW (G ,G∗

x )(F )
ιw−→ (X+
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Future questions

1 Theorem (Schwein, D.): Assuming refined conjecture (discrete ϕ),
have bijection⊔

x∈H1(EKal,G∗)

JLL−1
G∗
x
(ϕ)KW (G ,G∗

x )(F )
ιw−→ (X+

ϕ (Ĝ ) � Z
Ĝ
(ϕ))♮

2 H1(EKott,G ) ↔ geometry of Fargues-Fontaine curve

3 H1(EKal,G ) ↔ geometry of ??

4 Construction of supercuspidals on “Galois side”

5 Non-discrete ϕ?

6 H1(EKal,G ) produces many strange subgroups
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Picture sources (in order)

1 www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1/12/a/a/

2 https://www.quantamagazine.org/how-the-towering-p-adic-numbers-
work-20201019/

3 https://en.wikipedia.org/wiki/P-adic number

4 https://www.chem.tamu.edu/rgroup/marcetta/chem362/lectures

5 https://mathworld.wolfram.com/DynkinDiagram.html

6 https://publications.ias.edu/rpl/paper/43

7 Bambozzi, Federico et al. “Analytic geometry over F1 and the
Fargues-Fontaine curve.” Advances in Mathematics (2017)

8 https://math.berkeley.edu/ fengt/Geometrization.pdf
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