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Abstract

Since 1915, statisticians have been applying Fisher’s Z-transformation
to Pearson product-moment correlation coefficients. We offer new geometric
interpretations of this transformation.
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1. Introduction

Noting some limitations of Pearson’s product-moment correlation coefficient (r),
Fisher (1915) suggested a transformation

Zr = arctanh(r)

that has advantages over r. Relative to the correlation coefficient, Zr has a simpler
distribution; its variance is more nearly independent of the corresponding population
parameter (Zρ); and it converges more quickly to normality (Johnson, Kotz, and Bal-
akhrishnan, 1995). Fisher’s Z transformation is featured in statistics texts (e.g., Casella
and Berger, 2002) and is used by meta-analysts (Lipsey and Wilson, 2001).

Much has been learned about Zr since 1915. We now know the exact distribution
of Zr for data from a bivariate normal distribution (Fisher, 1921), the exact distribution
of Zr for data from a bivariate Type A Edgeworth distribution (Gayen, 1951), and the
asymptotic distribution of Zr for virtually any data (Hawkins, 1989). We know that Zr

can be derived as a variance-stabilizing transformation or a normalizing transformation
(Winterbottom, 1979). We have Taylor series expressions for the moments of Zr and
several related statistics (Hotelling, 1953).

Although scholars have been thorough in describing the analytic properties of Zr,
they have had little to say about the geometry of this transformation. True, there is a
geometric flavor to certain discussions of Zr -transformed correlation matrices (Brien,
Venables, James, and Mayo, 1984). Still, the dearth of geometric knowledge about Zr is
striking, when geometric treatments of r abound (Rodgers and Nicewander, 1988).

In the current article, we offer the first geometric interpretations of Zr to date. In
Section 2, we develop some Euclidean area representations. These depict r and Zr as
areas — both in the two-dimensional scatterplot, and in an N -dimensional vector space.
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Figure 1.
Fisher’s Zr as area in scatterplot

Line segments bound the areas that represent r. Line segments and hyperbolas bound
the areas that represent Zr . Our area depictions of Zr are easy to visualize; however, the
corresponding depictions of r are non-standard. In Section 3, we introduce some concepts
from hyperbolic geometry which are surprisingly useful in understanding Zr. These allow
us to develop analogues to the usual geometric representations of r. There, we interpret
Zr as a slope of the least-squares regression line in a two-dimensional scatterplot and as
the length of the projection of one N -dimensional vector onto another. We also identify an
error criterion that is compatible with Zr. In Section 4, we make a few final observations.

2. Zr as Euclidean area

2.1. Areas in two dimensions

Correlational statistics can be represented as areas in Euclidean space. Suppose that
we have data on two variables (X and Y ) which we have standardized in the usual manner

via xi = (Xi−X)
sX

and yi = (Yi−Y )
sY

. Then the least-squares regression line for predicting
y from x is, of course, y = rx. Let us depict this regression line in a two-dimensional
xy scatterplot, along with its reflection in the x-axis — the line y = −rx. Let us also
insert into our xy scatterplot the unit hyperbola H1 = {(x, y) |x2 − y2 = 1, x > 0}. The
quantity Zr can be regarded as the area enclosed by this hyperbola, the regression line,
and its reflection. See Figure 1.

To justify this representation, let us begin by changing to polar coordinates
(x, y) = ( u cos φ, u sin φ). Then the equation of the hyperbola becomes x2 − y2 =
u2

(
cos2 φ− sin2 φ

)
= u2 cos (2φ) = 1, so that the area indicated in Figure 1 can be

expressed as the integral

1
2

∫ arctan(r)

− arctan(r)

u (φ)2 dφ =
1
2

∫ arctan(r)

− arctan(r)

1
cos (2φ)

dφ

=
1
2

ln
(

r + 1
r − 1

)
= arctanh (r) = Zr.



charles f. bond, jr. and ken richardson 293

y = r x

(1,r)

(1,-r)

Figure 2.
Pearson’s r as area in scatterplot

It is possible to represent the Pearson product-moment correlation coefficient in a
similar picture. We do so by replacing the hyperbola from Figure 1 with a vertical line
drawn at x = 1. Now r can be depicted as the signed area of a triangle – the triangle
formed by the least-squares regression line y = rx, its reflection y = −rx, and the line
x = 1. See Figure 2.

These area representations illustrate certain features of Fisher’s Z transformation.
When the least-squares regression line is horizontal, both r and Zr are 0. The two relevant
“areas” of the scatterplot are degenerate because the regression line y = rx coincides with
its reflection y = −rx. When the regression line has non-zero slope, the area representing
r is contained in the area representing Zr ; thus, |r| < |Zr|. Note that these areas are
similar in size when the regression line is nearly horizontal and diverge as the line becomes
steeper. In the extreme case, r = ±1, the least-squares regression line and its reflection
are the asymptotes y = ±x of the hyperbola x2 − y2 = 1, and Zr is unbounded.

2.2. Areas in N dimensions

Data that can be represented as N points in 2-space can also be represented as two
vectors in N -space. In N -dimensional space, the Pearson product-moment correlation
coefficient between two variables can be regarded as the cosine of the angle between the
corresponding vectors, as Fisher (1915) first noted.

We exploit this construction in Figure 3. We now represent the data by the two

normalized vectors x = (X1−X,...,XN−X)√∑
(Xi−X)2 and y = (Y1−Y ,...,YN−Y )√∑

(Yi−Y )2 in RN and consider

the perpendicular projection of y onto x, which we symbolize by Px (y) . Since each vector
has been normalized to length 1, r is the length of Px (y) — as we will be discussing
below. In the meantime, let us note that Zr can be represented by an area in the two-
dimensional span of x and y.

To construct this area, we begin by placing two axes onto this subspace – one in
the direction of x (which we call u) and a second orthogonal to it (which we call v). We
position the axes so that x and y originate at the point (1, 0) in the (u, v) coordinate
system. We construct the line u = 1+ r, which is coincident with the perpendicular from
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Figure 3.
Fisher’s Zr as area in N -space

y to x. Next we reflect both x and y about the line u = 1, drop a perpendicular from
the reflection of y onto the reflection of x, and extend this perpendicular to form the
line u = 1 − r. We finish the construction by placing into this subspace the hyperbola
v = 1

2u , which is the unit hyperbola rotated by π
4 . See Figure 3. Then the signed area

between this hyperbola and the u-axis bounded by the two lines u = 1− r and u = 1 + r
is

∫ 1+r

1−r

1
2u

du =
1
2

ln (1 + r)− 1
2

ln (1− r) (1)

=
1
2

ln
(

1 + r

1− r

)
(2)

= arctanh (r) = Zr. (3)

Having depicted Zr as a two-dimensional area in N -space, we can get a picture of r
by making a single modification to Figure 3: we replace the hyperbola v = 1

2u with the
line v = − 1

2u + 1 (the tangent line to the hyperbola at u = 1). See Figure 4. Then this
line bounds a trapezoid whose three other sides are the u-axis, the line u = 1 − r, and
the line u = 1 + r. This trapezoid has an area of r, as should be apparent because this
area would be unchanged if we rotated the line v = − 1

2u + 1 counterclockwise about the
point

(
1, 1

2

)
until it became the horizontal line v = 1

2 . The area of the resulting rectangle
is clearly r. We prefer the trapezoid because it is contained within the area representing
Zr. Also, observe that the trapezoidal area r is precisely the midpoint approximation
with one subdivision to the integral of equation (3) above representing the area Zr.

Let us note how Figures 3 and 4 illustrate Fisher’s Z transformation. When r = 0, y
is orthogonal to x, and Px (y) has 0 length. Thus, the two vertical sides of the trapezoid
in Figure 4 are coincident, and r is represented by a degenerate figure that has no area.
The Zr area is also degenerate, it too having zero width. As r diverges from zero, the
two bounding lines diverge, and it becomes relevant to note that the hyperbola v = 1

2u
lies above the line v = − 1

2u + 1, so that |r| < |Zr| for all nonzero r. In the extreme
case (when r = ±1), y is superimposed over x, the line u = 1 ∓ r never intersects the
hyperbola of Figure 3, and Zr is unbounded.
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Figure 4.
Pearson’s r as area in N-space

2.3. Zr- and r-inspired geometry

Having depicted Zr as a Euclidean area in two-dimensional and N -dimensional space,
let us comment on our representations. These depictions of Zr are easy to understand,
because of the familiarity of Euclidean geometry. Moreover, each of our Euclidean area
depictions of Zr is directly comparable to a depiction of r in the same space; hence, the
relationship between the two statistics can be readily seen. These representations have a
drawback, however. The correlation coefficient is rarely represented as an area, and our
pictures of r may seem a bit contrived. In fact, we began the work described in Sections
2.1 and 2.2 by developing geometric representations of Zr and (having constructed Zr)
then sought parallel depictions of r. We now reverse the logic of these constructions. We
begin Section 3 with two standard geometric representations of r – one in two dimensions
and a second in N dimensions. We then create analogous representations of Zr. To do so,
we must leave Euclidean space and introduce some concepts from hyperbolic geometry.

3. Zr in hyperbolic space

In the last century (or so), mathematicians have developed alternatives to the geom-
etry described by Euclid thousands of years ago. One of these — hyperbolic geometry —
is uniquely well suited for representing Fisher’s Zr. Here we depict Zr with two models
of hyperbolic geometry. Each model will be defined on a certain subset of Rn. On each
space, we define a distance function from which properties of the model can be deduced.
We have a special interest in distances, angles, and geodesics (that is, distance-minimizing
curves).

3.1. Euclidean slope and hyperbolic slope

For the most common geometric interpretation of r, the two variables of interest (X
and Y ) are standardized to x and y as in Section 2.1 above, and depicted as N points
in a two-dimensional scatterplot. Figure 2 represented r as an area in this plot; but r
is usually regarded as a slope — the slope of the least-squares regression line of y on
x. For a data point that has a horizontal distance from the origin of one unit (that is,
one standard deviation), we predict that its vertical distance from the origin will be r
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Figure 5.
Pearson’s r as Euclidean slope

units (that is, r standard deviations). All distances are, of course, defined in a Euclidean
metric. Thus, r is the Euclidean “rise” over the Euclidean “run” of the standardized
least-squares regression line. See Figure 5.

In this Section, we develop an analogous interpretation for Zr by showing that
Fisher’s Z transform can be regarded as the hyperbolic slope of the standardized least-
squares regression line. In particular, Zr can be seen as the hyperbolic “rise” of the
regression line over its Euclidean “run.”

For this interpretation, we use a one-dimensional model of hyperbolic space – the
unit hyperbola H1 = {(x, y) |x2−y2 = 1, x > 0}. Recall that the H1 can be parametrized
as (x, y) = (cosh (t) , sinh (t)) =

(
et+e−t

2 , et−e−t

2

)
for t ∈ R, that tanh (t) = cosh(t)

sinh(t) , and
that the associated inverse functions are denoted arctanh, arccosh, and arcsinh.

Our construction also requires a distance function on H1. For convenience, we
parametrize the hyperbola by

(x, y) =
(

1√
1− t2

,
t√

1− t2

)

= (cosh (arctanh (t)) , sinh (arctanh (t)))

for −1 < t < 1. Let two points on the unit hyperbola be designated P =
(

1√
1−a2 , a√

1−a2

)

and Q =
(

1√
1−b2

, b√
1−b2

)
. The hyperbolic arc on H1 between P and Q can be

parametrized by the curve α (t) =
(

1√
1−t2

, t√
1−t2

)
for a ≤ t ≤ b. Then we use an

inner product (the hyperbolic metric) that is defined as 〈v, w〉 = −v1w1 + v2w2 to com-
pute the hyperbolic length of this arc, the distance d (P, Q) from P to Q, as follows. We
have α′ (t) =

(
t

(1−t2)3/2 , 1
(1−t2)3/2

)
, and

d (P, Q) = hyperbolic arclength from P to Q (4)

=
∫ b

a

√
〈α′ (t) , α′ (t)〉 dt (5)

=
∫ b

a

√
− t2

(1− t2)3
+

1
(1− t2)3

dt (6)
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Figure 6.
Fisher’s Zr as hyperbolic slope

=
∫ b

a

1
1− t2

dt = arctanh (b)− arctanh (a) (7)

Note that the point P = (1, 0) = (cosh (0) , sinh (0)) is in H1 and can be viewed as
the origin of H1, in the following sense. By (7), the hyperbolic distance from any point(

1√
1−t2

, t√
1−t2

)
in H1 to the origin (1, 0) is arctanh (t) − arctanh (0) = arctanh (t). For

details about this hyperboloid model of hyperbolic space, see Cannon, Floyd, Kenyon,
and Parry (1997) and Bridson and Haefliger (1999). It is more commonly used in higher
dimensions.

We are now prepared to interpret Zr as a hyperbolic slope. To do so, we insert H1

into the xy scatterplot. Note that at the point where the regression line y = rx intersects
H1, we have x2 − (rx)2 = 1 and x > 0, or x = 1√

1−r2 , y = r√
1−r2 . By the arclength

expression in equation (7) above, it is evident that the hyperbolic rise of this intersection
point (from the horizontal axis) is arctanh (r) = Zr.

Thus, Zr can be regarded as the hyperbolic “rise” of the regression line corresponding
to a Euclidean “run” of one unit; or as the hyperbolic slope of the line y = rx. See Figure 6.

A standardized least-squares regression line has a single well-defined hyperbolic
slope. A line’s hyperbolic slope does not depend on the position along the line at which
we begin to measure its slope, nor on the “run” from which the slope is computed.
To see that the hyperbolic slope is well-defined, consider a line y − y0 = m (x− x0)
whose Euclidean slope m is between 1 and −1 and which contains the point (x0, y0).
Choose any nonzero ∆x, which corresponds to the Euclidean run. Next, consider the
hyperbola that has a vertical tangent at (x0 + ∆x, y0) and whose asymptotes intersect
at (x0, y0) and have slopes ±1 — namely, the hyperbola (x− x0)

2 − (y − y0)
2 = (∆x)2.

If we intersect this hyperbola with the line y − y0 = m (x− x0), the result is the point(
x0 + ∆x√

1−m2 , y0 + m∆x√
1−m2

)
. Using the hyperbolic metric 〈v, w〉 = −v1w1 +v2w2 to com-

pute the hyperbolic arclength from this point to (x0 + ∆x, y0)— that is, the hyperbolic
“rise”— calculations similar to the above yield (assume ∆x > 0 for simplicity)

hyperbolic rise = ∆x

∫ m

0

√
− t2 (∆x)2

(1− t2)3
+

(∆x)2

(1− t2)3
dt

= ∆x arctanh (m) ,
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Figure 7.
Pearson’s r as Euclidean length

so that the hyperbolic slope still calculates as

hyperbolic slope : =
hyperbolic rise
Euclidean run

=
∆x arctanh (m)

∆x

= arctanh (m) .

This is the inverse hyperbolic tangent of the ordinary slope, which is independent of the
choice of the point on the line and independent of ∆x.

This representation illustrates features of Zr that should now be familiar. When
the regression line of y on x is horizontal, it intersects the unit hyperbola at the point
(1, 0), and the line has no hyperbolic distance from the x-axis. Thus a hyperbolic slope
of 0 corresponds to a Euclidean slope of 0. As the Euclidean slope increases, so does
the hyperbolic slope. In the extreme case, r = ±1, the standardized regression line is
asymptotic to the unit hyperbola, and the hyperbolic “rise” of the line is undefined.

3.2. Euclidean projection and hyperbolic projection

Fisher (1915) created the usual N -dimensional depiction of the correlation coeffi-
cient. Let x and y be the two N -dimensional data vectors of Section 2.2, and note that
these vectors lie on the unit sphere. Figure 4 depicted r as an area in the subspace
spanned by x and y, but it is simpler to give r a length interpretation. In particular, the
correlation between X and Y is the cosine of the angle θ between y and x. When y is
normalized to have a length of 1, r is the signed length of the perpendicular projection
of y onto x. In the notation of Section 2.2 above, |r| = |Px (y)|. On the other hand, the
projection of y onto the line perpendicular to x yields the vector connecting Px (y) and
y; the length of this is |y − Px (y)| = sin θ =

√
1− r2. This quantity measures the lack

of fit of the least-squares line. All lengths are, of course, Euclidean. See Figure 7.
For an analogous picture of Zr, we must enter hyperbolic N -space. Thus, consider

a non-Euclidean metric on the open unit ball in RN , for which the curves defined by the
vectors x and y are infinite geodesic rays separated by an angle θ in hyperbolic space.
This ball model of hyperbolic N -dimensional space of constant sectional curvature −1
is the subset BN = {(x1, ..., xN ) | |(x1, ..., xN )| < 1} ⊂ RN , endowed with the metric

〈v, w〉(x1,...,xN ) =
(

4

(1−x2
1−...−x2

N)2

)
v · w for vectors v and w originating at (x1, ..., xN ),

where v · w is the usual dot product. It turns out that the geodesics (length-minimizing
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curves) in this metric are either lines through the origin or circles perpendicular to
the unit sphere SN = {(x1, ..., xN ) | |(x1, ..., xN )| = 1}, and all of these geodesics are
infinitely long. Two such geodesics are called asymptotic if the corresponding circles or
lines meet at a point on the unit sphere. The directed line segments connecting the origin
to the normalized data points x and y are infinite geodesic segments (call them α and β,
respectively), and the plane through the origin containing the segments is isometric to
two-dimensional hyperbolic space. Since this metric is conformal to the Euclidean metric,
the hyperbolic angles between curves in this hyperbolic model are exactly the Euclidean
angles between the curves. See, for example, Cannon, Floyd, Kenyon, and Parry (1997)
for facts about this and other models of hyperbolic space.

In Euclidean N -space, Pearson’s r is the length of the perpendicular projection of
one normalized vector onto another. In hyperbolic N -space, Fisher’s Zr has a parallel
interpretation, as we now explain. Consider two unit vectors v and w starting at a point
in the N -dimensional hyperbolic space of constant sectional curvature −1, and let α and
β be the unit-speed geodesics with initial velocities v and w, respectively. Suppose the
angle between the two vectors is θ. Next, form the asymptotic geodesic right triangle
defined as follows. The first infinite side (the hypotenuse) consists of the points α (t)
for 0 ≤ t ≤ ∞. The finite side consists of the points β (t) for t between 0 and T for a
fixed T 6= 0, to be determined later. The infinite leg of this triangle is a geodesic that is
asymptotic to the hypotenuse β, that contains the point β (T ), and that is perpendicular
to the geodesic β at β (T ). There is a unique T that allows these conditions to be satisfied.
We wish to find T in terms of θ; observe that |T | is the length of the finite side. The
quantity T is called the hyperbolic projection of α onto β, which may be positive or
negative.

There are many ways to calculate this quantity T ; we choose a coordinate-free
method. Observe that any (possibly asymptotic) geodesic triangle with leg |T |, oppo-
site angle B, and other angles A and C satisfy the angular hyperbolic Law of Cosines
equation cosh (T ) = cos B+cos A cos C

sin A sin C ; see, for example, Anderson (1999, section 5.7). Let-
ting C = π

2 , B = 0, and A = θ as in our case, we obtain the equation cosh (T ) = csc (θ).
We then obtain the equation

√
cosh2 (T )− 1 =

√
csc2 (θ)− 1, or

sinhT = cot θ,

noting that T is negative if θ > π
2 . Dividing this equation by the original equation of

cosh (T ), we get

tanh (T ) = cos θ, or

T = arctanh (cos θ)

= arctanh (r) = Zr,

if the geodesic rays α and β correspond to the normalized Euclidean data vectors x and
y, respectively. Therefore, the hyperbolic projection of the end α (∞) onto the geodesic
β is the Fisher Z transform corresponding to the correlation coefficient r = cos θ. Note
that the Euclidean position of the point β (a) relative to the origin is 1−sin θ

cos θ units in the
direction of the velocity vector of β, and the infinite geodesic is an arc of the Euclidean
circle tangent to α and perpendicular to β. See Figure 8.

This figure, like the earlier ones, embodies the best-known features of Zr . When
r = 0, α is orthogonal to β; hence its projection onto β is zero. When r = ±1, α = β;
hence the projection of α onto β has the same length as α. Hyperbolically, that length
is infinite. Note that Figures 7 and 8 are not directly comparable for intermediate values
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Figure 8.
Fisher’s Zr as hyperbolic length

of r, because the two geometric descriptions use different metrics.
The representations we have constructed in Figures 7 and 8 illustrate a geometric

property that Zr shares with r. In Figure 7, r is the Euclidean length of a projection of
y onto x. In Figure 8, Zr is the hyperbolic projection of y onto x. Implicit in Figure 7
are some additional features of r. In Figure 7, the distance between y and its projection
onto x is sin θ, a natural measure of the lack-of-fit between y and x because the vector
Px (y) − y is shorter than any other curve connecting the end of y to a point along
x. Thus, r is not merely the signed length of the perpendicular projection of y onto
x. It is the position of the point along x that is closest to y. Unfortunately, Figure 8
affords no similar interpretation. In fact, the geodesic in Figure 8 that joins α (∞) (the
endpoint of y) with β (the geodesic containing x) has infinite hyperbolic length. Of the
many geodesics through α (∞) that would intersect β, this particular one was chosen
because it is orthogonal to β. This geodesic is not, however, any shorter (or longer)
than competitors that would have intersected β at a different point – because all such
geodesics have infinite hyperbolic length. Hence, Zr cannot be viewed as the length of a
point along β that is closer to α (∞) than any other point. Nor does Figure 8 provides
us with a meaningful measure of the lack of fit between α and β. These interpretations
will require a new definition of distance between a point and a geodesic — a definition
that we offer in Section 3.3.

3.3. Error minimized by Zr

The Pearson product-moment correlation coefficient is the least-squares estimator
of linear relationship between standardized variables. If these variables are the vectors y
and x of Section 3.2 above, the least-squares property of the correlation coefficient can
be expressed as |y − rx| < |y − bx| for every b 6= r. Textbook authors often use this error
criterion to motivate the choice of Pearson’s product-moment correlation coefficient as
a measure of linear relationship. We now seek an error criterion that would motivate
the choice of Fisher’s Z statistic. Mathematically, this will be a “distance” function in
hyperbolic N -space which is minimized at the value Zr .

Given a geodesic ray L starting at a point (say the origin) in hyperbolic N -
dimensional space and point p not on L, we define the asymptotic distance D (L, p,∞)
from L to p to be

D (L, p,∞) = lim
t→∞

(exp (d (L (t) , p)− t)) ,
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Asymptotic distance criterion

where d denotes hyperbolic distance and L (t) is the point of L that is t (hyperbolic) units
from the origin. See Figure 9. In some sense, this measures the hyperbolic proximity of
the point p to the end of the geodesic L. To the geodesic triangle whose vertices are the
origin, L (t), and p, we apply the hyperbolic Law of Cosines; see Anderson (1999, section
5.7). If θ is the angle between L and the geodesic connecting p with the origin, then

cosh (d (L (t) , p))

= cosh (t) cosh (d (0, p))− sinh (t) sinh (d (0, p)) cos θ,

so that

D (L, p,∞) = lim
t→∞

(exp (d (L (t) , p)− t))

= lim
t→∞

exp(arccosh( cosh (t) cosh (d (0, p))

− sinh (t) sinh (d (0, p)) cos θ)− t).

Using the estimates cosh (t) = et

2

(
1 + O

(
e−2t

))
, sinh (t) = et

2

(
1 + O

(
e−2t

))
, arccosh (x) =

log (2x) + O
(

1
x2

)
, we obtain

D (L, p,∞) = lim
t→∞

(
et (cosh (d (0, p))− sinh (d (0, p)) cos θ) e−t

)

= cosh (d (0, p))− sinh (d (0, p)) cos θ

Returning to the statistics problem, suppose that we have normalized x and y vectors
in RN , and let θ be the angle between the vectors. Let Ly denote a geodesic ray with
initial velocity y at the origin, say, and let bx denote the point in hyperbolic space that
is b units away from the origin in direction x. Suppose that we wish to find b such that
D (Ly, bx,∞) is minimum. Then

D (Ly, bx,∞) = cosh (b)− sinh (b) cos θ,

and ∂
∂bD (Ly, bx,∞) = 0 implies that

0 =
∂

∂b
(cosh (b)− sinh (b) cos θ)

= sinh(b)− cosh(b) cos θ,
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or

b = arctanh (cos θ) = Zr ,

which implies that

D (Ly, Zrx,∞) = cosh (Zr)− sinh (Zr) tanh (Zr)

=
cosh2 (Zr)− sinh2 (Zr)

cosh (Zr)

=
1

cosh (Zr)
=

1
cosh (arctanh (cos θ))

=
√

1− cos2 (θ) = sin θ.

We check the second derivative:

∂2

∂b2
(cosh (b)− sinh (b) cos θ) = cosh (b)− sinh (b) cos θ

= D (Ly, bx,∞) > 0,

to find that the asymptotic distance D (Ly, bx,∞) in fact achieves a global minimum
value of sin θ at b = Zr. Observe that this newly-defined asymptotic distance is the same
as the minimum Euclidean distance from y to bx, if y and x have Euclidean length 1.

4. Conclusion

Here we have developed the first geometric interpretations of Fisher’s Zr transfor-
mation. As our work reveals, Zr is geometrically similar to r; indeed, the similarities
are so strong that we regard Zr as the hyperbolic counterpart to the Euclidean r. Our
constructions illustrate well-known features of these two statistics and allow us to see the
r-to-Zr transformation for the first time.

The geometric context of this paper suggests many additional questions such as
the following, which have not yet been considered. Can the sampling properties of the
Zr statistic be understood in a geometric way? Does every transformation of r suggest
a particular type of geometry? We offer the present work with the hope of inspiring
additional insights.
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