Justification is required for all statements.

(1) Suppose that $f: [-\pi, \pi] \to \mathbb{R}$ is a continuously differentiable function such that $f(\pi) = f(-\pi)$ and $f'(\pi) = f'(-\pi)$, and such that $\int_{-\pi}^{\pi} f(\theta) \sin(k\theta) \, d\theta = 0$

for all $k \in \{1, 2, ...\}$. Prove that $f(\theta) = f(-\theta)$ for all $\theta \in [-\pi, \pi]$.

(2) Let M be the upper hemisphere of the sphere of radius R centered at the origin. That is,

$$M = \{(x, y, z) : z > 0 \text{ and } x^2 + y^2 + z^2 = R^2\}$$

Let

$$\mathbf{F}(x,y,z) = \left(x^2 e^{y^2 - z^4}\right)\mathbf{i} + \left(e^{x^2 + y^2} + yz\right)\mathbf{k}.$$

Find $\int_M \mathbf{F} \cdot \mathbf{n} \, dS$, where \mathbf{n} is the outward pointing unit normal to the surface and dS is the area element.

(3) Let A and B be two compact subsets in \mathbb{R}^n . Define

$$A + B = \{a + b : a \in A, b \in B\}.$$

Prove that A + B is a compact subset of \mathbb{R}^n .

- (4) Using the definition of Riemann integrability, prove that if $F : [0,1] \to \mathbb{R}$ is continuous, then it is Riemann integrable on [0,1].
- (5) (a) Prove or disprove that the Taylor-Maclaurin series for $\cos(x)$ converges pointwise to $\cos(x)$ on \mathbb{R} .
 - (b) Prove or disprove that the Taylor-Maclaurin series for $\cos(x)$ converges uniformly to $\cos(x)$ on \mathbb{R} .
 - (c) Estimate $\cos(0.1)$ accurate to within 0.0001.
- (6) Suppose $g(x) = \sum_{n \ge 1} ne^{-nx}$.
 - (a) Prove that g is continuous on $(0, \infty)$.
 - (b) Prove that $\int_{1}^{\infty} g(x) dx$ converges, and evaluate the integral.
- (7) Suppose f is a continuous function on \mathbb{R} such that $f(x) \neq x$ for all $x \in \mathbb{R}$.
 - (a) Prove that either f(x) > x for all $x \in \mathbb{R}$ or f(x) < x for all $x \in \mathbb{R}$.
 - (b) Let $a_0 > 0$, and define inductively $a_n = f(a_{n-1})$ for all $n \in \mathbb{N}$. Show that the sequence $(a_n)_{n\geq 0}$ is monotone.
 - (c) Show (a_n) is unbounded.
- (8) Let $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable. Assume that there is a vector $\mathbf{v} \in \mathbb{R}^n$ and a sequence $\mathbf{0} \neq \mathbf{x}_k \to \mathbf{0}$ such that $\mathbf{F}(\mathbf{x}_k) = \mathbf{v}$ for all k. Prove that det $\mathbf{F}'(\mathbf{0}) = 0$.