Algebra Preliminary Exam Spring 2014

Work all eight problems, justifying your work. Each is worth 10 points. You have four hours.

- (1) Let H be a subgroup of a group G. Prove that defining multiplication on cosets by $Hx \cdot Hy = Hxy$ is well-defined if and only if H is normal in G.
- (2) Prove that distinct (complex) eigenspaces of an orthogonal matrix are orthogonal.
- (3) Prove that every finite integral domain is a field.
- (4) For matrices A and B where AB is defined, prove rank $AB \leq \min\{\operatorname{rank} A, \operatorname{rank} B\}$.
- (5) Prove that every finite multiplicative subgroup of a field is cyclic.
- (6) Let K be a field and $f_1, f_2 \in K[x]$. Let M be the splitting field of f_1f_2 , let $L_1 \subset M$ be the splitting field of f_1 , and let $L_2 \subset M$ be the splitting field of f_2 . Prove that there exists a monomorphism τ : Gal $(M, L_1) \to$ Gal (L_2, K) .
- (7) Let S_n denote the symmetric group and A_n denote the alternating group (the subgroup of even permutations).

 - (a) Prove that $\{\sigma^2 : \sigma \in S_n\}$ generates A_n . (b) Prove that $\{\sigma^2 : \sigma \in S_n\} = A_n$ if and only if $n \leq 5$.
- (8) Let G be a finite group, let R^{\times} be the multiplicative group of units in a ring R, and let $\phi: G \to R^{\times}$ be a nontrivial homomorphism. Prove that $\sum_{g \in G} \phi(g)$ is either 0 or a zero divisor in R.