REAL ANALYSIS PRELIMINARY EXAMINATION JANUARY 14, 2014

- (1) Let f be the function of period 2 that equals |x| on [-1, 1].
 - (a) Find the Fourier series of f.
 - (b) Use it to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- (2) Suppose that the function $h: [0,1] \to \mathbb{R}$ is continuous and that h(x) is irrational for every $x \in [0,1]$. Prove or disprove that h must be a constant function.
- (3) Let C be the oriented curve given by $r(t) = (4 + \cos t, -3\sin t)$ for $0 \le t \le 2\pi$. Compute the line integral $\int_C (e^x y^2) dx + (\cos y 2x) dy$.
- (4) Suppose that $\sum_{n=0}^{\infty} a_n$ converges.
 - (a) Prove or disprove that ∑_{n=0}[∞] (a_n)² must also converge.
 (b) Prove or disprove that ∑_{n=0}[∞] (a_n)³ must also converge.
- (5) Suppose that $f : \mathbb{R} \to \mathbb{R}$ such that $|x y| < \varepsilon$ implies $|f(x) f(y)| < \varepsilon^2$. Prove that f is constant.
- (6) Consider $f : [a, b] \to \mathbb{R}$.
 - (a) Prove or disprove: If f is Riemann integrable on [a, b], then so is |f|.
 - (b) Prove or disprove: If |f| is Riemann integrable on [a, b], then so is f.
- (7) (a) Prove or disprove that there exists a surjective continuous function $F: B \to H$, where B is an open ball in \mathbb{R}^2 and $H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 + 1 = 0\}.$
 - (b) Prove or disprove that there exists a surjective continuous function $F: H \to B$, with H and B as in (a).
- (8) Let g be a differentiable function on \mathbb{R} . Prove that if g'(x) > g(x) > 0 for all $x \in \mathbb{R}$, then there is a constant c > 0 such that $g(x) \ge cx$ for all $x \in \mathbb{R}$.