Contents

1.	The complex plane	1
2.	Geometry in the complex plane	3
3.	Topology and analysis in the complex plane	3
4.	Paths	4
5.	Holomorphic Functions	4
6.	Complex Series & Power Series	5
7.	A cornucopia of holomorphic functions	5
8.	Conformal Mapping	6
9.	Multifunctions	8
10.	Integration in the complex plane	8
11.	Cauchy's Theorem I	8
12.	Cauchy's Theorem II	9
13.	Cauchy's Formulae	9
14.	Power series representation	9
15.	Zeros of holomorphic functions	11
16.	Holomorphic functions: further theory	12
17.	Singularities	13
18.	Cauchy's Residue Theorem	13
19.	Harmonic Functions	15
20.	Infinite Products	15

1. The complex plane

- 1.1 Write each complex number in trigonometric (polar) form.
 - (a) $i \sqrt{3}$
 - (b) $\frac{i+1}{i-1}$
 - (c) $-\pi$
 - (d) $3i + \sqrt{3}$

(e)
$$-2 + 2i\sqrt{3}$$

(f)
$$\frac{1+i}{\sqrt{3}-i}$$

1.2 Find the polar form of $-2\sqrt{3} - 2i$. 1.3 Find all the values of $\sqrt[4]{-\frac{1}{2} - i\frac{\sqrt{3}}{2}}$, and simplify your answers.

- 1.4 Simplify $(2i+2)^7$.
- 1.5 Rewrite the number 7^{2-3i} in the form x + iy, with $x, y \in \mathbf{R}$.
- 1.6 Find all possible values of $(2i)^{2+i}$.
- 1.7 Find all the values of $\sqrt[3]{-\sqrt{2}+i\sqrt{2}}$.
- 1.8 Express in terms of r, θ , where $z = re^{i\theta}$:
 - (a) $|z 2 + 3i|^3 = 27$
 - (b) $\arg(iz) = \frac{2\pi}{3}$
 - (c) $|z^2 1| = 2$

1.9 Solve the equation $8z^4 = -iz$, putting the solutions in simplified polar form.

- 1.10 Solve the equation $z^3 8i = 0$, giving the solutions in simplified polar form.
- 1.11 Solve the equation $z^3 + 4\sqrt{2} + 4i\sqrt{2} = 0$, giving the solutions in simplified polar form.
- 1.12 Solve the equation $1 z^2 + z^4 z^6 + z^8 = 0$.
- 1.13 Let $n \in \mathbb{N}$. For any w on the unit circle in the complex plane, prove that

$$\operatorname{Re}\left(w^{n}\right) = \frac{1+w^{2n}}{2w^{n}}.$$

1.14 Prove that $Re(z\overline{w} + \overline{zw}) \leq 2 |Re(z)w|$ for all $z, w \in \mathbb{C}$.

1.15 Prove:

- (a) For all $z \in \mathbb{C}$, $|\operatorname{Re} z| + |z| \le 3 |z| |\operatorname{Im} (z)|$.
- (b) For all $z \in \mathbb{C}$, $|\text{Re}z|^2 + |z|^2 = 2|z|^2 |\text{Im}(z)|^2$.

1.16 State and prove the triangle inequality for complex numbers.

1.17 True or False. (Justify)

- (a) $\text{Im}(z^2) = (\text{Im}(z))^2$
- (b) $\operatorname{Re}(z \overline{z}) = 3\operatorname{Im}(z + \overline{z})$
- (c) $(1-i)^{25} = 4096 4096i$

2. Geometry in the complex plane

2.1 Given: If (a, b, c) is a point of the Riemann sphere, and x + iy is the corresponding point on the complex plane through the stereographic projection, the formula

$$(a, b, c) = \frac{1}{x^2 + y^2 + 1} \left(2x, 2y, x^2 + y^2 - 1 \right)$$

is satisfied.

- (a) Consider the circle that is the intersection of the plane a + b + c = 1 with the Riemann sphere. Show that the stereographic projection maps this circle to a line, and find the equation of this line.
- (b) Explain geometrically why your answer makes sense.
- 2.2 Let $F(z) = (2+i)z^3 + cz 1$, where c is a fixed complex number.
 - (a) Is $F: \mathbf{C} \to \mathbf{C}$ a surjective map? (A 1-sentence justification of your response is sufficient.)
 - (b) Suppose that the set $\{z \in \mathbf{C} : F(z) = F(i)\}$ is the union of two points. Find c.
- 2.3 Suppose that the plane $x_3 = x_1 x_2$ is intersected with the Riemann unit sphere. What type of curve is this intersection? Find the image of this curve under the stereographic projection.
- 2.4 Which part of the complex plane is stretched, and which part of the plane is shrunk under the mapping g(z) = z(1-z)?

3. TOPOLOGY AND ANALYSIS IN THE COMPLEX PLANE

3.1 Determine, with proof, if the sequence $(z_n)_{n\geq 1}$ converges or diverges, when for $n \in \mathbb{N}$,

$$z_n = \frac{(1-i)^{2n}}{(2+i)^n}.$$

3.2 In each case, determine if $\lim_{z \to 0} f(z)$ exists.

(a)
$$f(z) = \frac{z^2}{|z|}$$

(b) $f(z) = \frac{\operatorname{Re}(z)^2 + 2|z|^2}{z^2}$
(c) $f(z) = \frac{z}{z\overline{z+2}}$

3.3 Find the set of all $z \in \mathbb{C}$ where the following functions are continuous.

(a)
$$\frac{1}{z^4-2}$$

(b) $\frac{1}{|z|^4-2}$
(c) $\frac{1-z^3}{1-z^4}$

4. Paths

- 4.1 Find all possible values of the argument of the complex number $\frac{d}{dt}g(v(t))|_{t=0}$, if $g(z) = z^3$ and $v : \mathbf{R} \to \mathbf{C}$ is a curve so that v'(0) = 2 i and v(0) = 3 2i. Give your answer in radians (Calculator allowed!).
- 4.2 Find the image of the curve $\gamma(t) = e^{it} i$ for $0 \le t \le \pi$, and indicate the direction the image is traced.

5. Holomorphic Functions

5.1 Find all points where the complex derivative $\frac{\partial f}{\partial z}$ exists. In each case, also determine if the function is holomorphic. If it is holomorphic, find the domain on which it is holomorphic.

(a)
$$f(z) = z^2 (1 - \overline{z}^2)$$

(b) $f(x + iy) = x (\cos y) e^x - y (\sin y) e^x + i (y (\cos y) e^x + x (\sin y) e^x)$

5.2 Justify:

- (a) Explain why a holomorphic function g preserves angles between curves through $z_0 \in \mathbf{C}$, as long as $g'(z_0) \neq 0$.
- (b) Give an example that shows that the statement above is false if $g'(z_0) = 0$.
- 5.3 Find all points where the complex derivative $\frac{\partial f}{\partial z}$ exists. In each case, also determine if the function is holomorphic. If it is holomorphic, find the domain on which it is holomorphic.
 - (a) $f(z) = 3 + 2iz^2$
 - (b) $f(z) = |z^2 2z + 1|$

(c)
$$f(z) = \frac{Re(z)}{z^2 + |z|^2}$$

- (d) $f(x+iy) = x + e^y ie^{1-y} + iex$
- 5.4 Prove that $g(z) = \sqrt{|\text{Re}z|} |\text{Im}z|$ satisfies the Cauchy-Riemann equations at z = 0 and is also complex differentiable there.
- 5.5 At what points are the functions below holomorphic?

(a)
$$\frac{1}{(z^3-1)^4}$$

(b) $\frac{1}{2+|z|^2}$

5.6 Prove that if f(z) = u(z) + iv(z) is holomorphic with u and v real-valued functions, then

$$f'(z) = v_y + iv_x.$$

6. Complex Series & Power Series

6.1 Determine if each series converges or diverges. Determine the sum, if possible.

(a)
$$\sum_{n=0}^{\infty} 3(3+4i)^{-n}$$
.
(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{((3+4i)n)^2}$.
(c) $\sum_{n=0}^{\infty} \frac{in}{e^{in}}$

6.2 Questions:

- (a) Write down an expansion of $k(z) = \frac{1}{z}$ as a power series in (z 2i).
- (b) Determine, with justification, the set of all z such that the power series you just found converges to k(z).
- 6.3 Write an expansion of the form $\sum_{n=0}^{\infty} c_n z^n$ for each of the following, and specify where the expansion is valid.
 - (a) $\frac{2-3i}{2z+3i}$ (b) $\frac{1}{8+z^3}$ (c) $\frac{1}{(z+2)(z-1)}$ (d) $\frac{1}{1+z+z^2+z^3}$
- 6.4 Find the radius of convergence of each power series:

(a)
$$\sum_{m=0}^{\infty} \frac{x^m}{2^m + 3^m}$$

(b) $\sum_{n=1}^{\infty} \frac{n^{n-1}x^n}{(2n+1)^n}$
(c) $\sum_{n=1}^{\infty} \frac{(n!)^2 x^n}{2^n n^{3+2n}}$

6.5 Determine the values of z for which the following series converge absolutely.

(a)
$$\sum_{n=1}^{\infty} \frac{3^n}{(z-1)^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1-z^n}{z^n}$$

7. A CORNUCOPIA OF HOLOMORPHIC FUNCTIONS

7.1 Find the multivalued exponent $\left[(1+i)^{-i} \right]$.

- 7.2 Find all values of $(2i)^{3-i}$, in simplified polar form.
- 7.3 Find all values of $(i)^{-2i}$, in simplified polar form.
- 7.4 Find the real and imaginary parts of each function:
 - (a) e^{e^z}
 - (b) $\cos(i\overline{z})$
- 7.5 Prove that $\overline{\cos(z)} = \cos(\overline{z})$.
- 7.6 Give an example of a nonconstant holomorphic function h such that $\overline{h(z)} = ch(\overline{z})$ for some constant c such that $c \neq 1$, for all z in its domain.
- 7.7 True or False: If g is a nonconstant entire holomorphic function, then g maps each circle centered at the origin to a line or a circle. (Include justification.)
- 7.8 Express $\cos(\pi + i) \sinh(2\pi + i)$ in the form x + iy, with $x, y \in \mathbf{R}$.
- 7.9 Define a function f by

$$f(z) = \left\{ \begin{array}{ll} \frac{1-\cos(z)}{z^2} & \text{if } z \neq 0\\ \frac{1}{2} & \text{if } z = 0 \end{array} \right\}$$

Prove that f is holomorphic on all of \mathbb{C} .

7.10 Let $g(z) = \cos(z) + \frac{1}{4-z^2}$

- (a) Find the Taylor series of the form $T(z) = \sum_{m=0}^{\infty} c_m z^m$ for g(z).
- (b) Evaluate the 75th derivative of g(z) at z = 0.
- (c) For which z does the Taylor series converge? [Justify briefly.]
- (d) For the values of z found in (b), does T(z) = g(z)? [Justify briefly.]
- (e) Suppose that g(z) is expanded in a Taylor series of the form $S(z) = \sum_{k=0}^{\infty} b_k (z+2i)^k$. For which values of z is it true that S(z) = T(z)?

8. Conformal Mapping

- 8.1 Give an example of a conformal map from the extended complex plane to itself that is 1-1 and onto and maps 2 to ∞ .
- 8.2 Find a conformal map $\alpha(z)$ from the upper half plane onto the disk of radius 2 centered at the origin such that $\alpha(i) = 0$ and $\arg(\alpha'(i)) = -\pi$.
- 8.3 Find a conformal map $\alpha(z)$ from the upper half plane onto the disk of radius 3 centered at the origin such that $\alpha(2i) = 0$ and $\arg(\alpha'(2i)) = \pi$.

- 8.4 (a) Where does the function $h(z) = \frac{z+i}{z-2}$ map the point z = 1? (b) What is the magnification of the map h at the point z = 1? (c) At what angle does h rotate curves through z = 1?
- 8.5 Find a conformal map from the set $\{(x, y) : x > 0, -x < y < x\}$ to the open unit disk.
- 8.6 Show that $g(z) = \frac{(1+i)z+(1-i)}{-z-i}$ maps the real axis in **C** to a circle centered at the origin. Find the radius of that circle.
- 8.7 Find and graph the image of the open rectangle $\{(x, y) : 1 < y < 2, 1 < x < 2\}$ under the map $h(z) = e^{i\pi z}$.
- 8.8 Let w(z) be a linear fractional transformation such that w(i) = 0 and such that it maps the lines y = x and x = 2 in the complex plane to two other lines.
 - (a) Is it possible that $w(\infty) = \infty$?
 - (b) Find an example of such a w(z) so that $w(a) = \infty$ for some $a \in \mathbb{C}$.
 - (c) For such an example as in (b), is it true that $\{w(z) : z \in \mathbf{C}\} = \mathbf{C}$?
- 8.9 Let $A = \{(x, y) : x > 0 \text{ and } y > \sqrt{3}x\} \subset \mathbb{R}^2$, and let D be the open disk of radius 1 in \mathbb{R}^2 centered at (2011, -2011). Find an orientation-preserving conformal map from A to D (expressed as a function of z = x + iy).
- 8.10 Let the map $F: \mathbf{C} \to \mathbf{C}$ be defined by $F(z) = 3z^4 8iz^3 6z^2 4i$
 - (a) Is F an onto map?
 - (b) Is F = 1 1 map?
 - (c) Is F an analytic map?
 - (d) Is F a conformal map?
 - (e) If α and β are two curves in **C** that intersect at an angle $\frac{\pi}{6}$, what are the possible angles that occur where the curves $t \mapsto F(\alpha(t))$ and $t \mapsto F(\beta(t))$ intersect? Give an example for each possibility.
- 8.11 Find the image of the set $\{(x, y) : 0 < x < 2\}$ under the transformation $G(z) = \frac{2z+1}{z+i}$.
- 8.12 Find a conformal map from the set $\{(x, y) : y > 0, x > 0, y < x\sqrt{3}\}$ to the open unit disk.
- 8.13 Prove or disprove that there is a biholomorphic map w(z) from the closed unit disk to itself such that w(1) = 1 and $w(0) = \frac{i}{2}$.
- 8.14 Find a conformal map $\alpha(z)$ from the upper half plane onto the disk of radius 2 centered at the origin such that $\alpha(i) = 0$ and $\arg(\alpha'(i)) = \pi$.
- 8.15 Find a 1-1 continuous map from the strip $\{(x, y) : 0 < x \leq 1\}$ onto $\mathbb{C} \setminus \{0\}$ such that its restriction to the interior of the given domain is conformal. Show that the inverse is not continuous on $\mathbb{C} \setminus \{0\}$.

- 8.16 Suppose A and B are two connected and simply connected open domains in \mathbf{C} . Suppose that the origin 0 is not in either domain.
 - (a) Prove that for arbitrary $z_0 \in A$ and $w_0 \in B$, there exists a holomorphic function $g: A \to B$ such that g is one-to-one and onto, and $g(z_0) = w_0$.
 - (b) In the previous question, is the function g uniquely determined by the given information?

9. Multifunctions

10. INTEGRATION IN THE COMPLEX PLANE

- 10.1 Evaluate $\int_{L} |z|^2 dz$ over the directed line segment L connecting the point 2 + i to -2 + i.
- 10.2 Find $\int_C z \cos\left(\frac{\pi z}{2}\right) dz$ over the curve C parametrized by $\gamma(t) = \frac{e^t t^8 + 1}{e^{t^2}} + i(t^7 t)$ for $0 \le t \le 1$.
- 10.3 Find the following integral two different ways (first by rewriting as a combination of real-valued line integrals, second as a complex integral): $\int_{\alpha} (3 - z - 2z^2) dz$, where α is the part of the circle of radius three in the fourth quadrant, oriented clockwise.
- 10.4 Using the last problem, find $\int_{\beta} (3 z 2z^2) dz$, where $\beta : [0, 1] \to \mathbb{C}$ is the curve defined by $\beta(t) = 3(2t^3 1)t^2 3i\cos\left(\frac{\pi t}{2}\right)$.
- 10.5 Find a good upper bound for $F(R) = \left| \int_{C_R} \frac{3z-2}{z^4+1} dz \right|$, where C_R is the circle of radius R, oriented counterclockwise. Use it to show that $\lim_{R \to \infty} F(R) = 0$.

11. CAUCHY'S THEOREM I

- 11.1 Let $\gamma(w; R)$ denote the circle of radius R centered at $w \in \mathbb{C}$, oriented counterclockwise. Evaluate each of these integrals.
 - (a) $\int_{\gamma(i;2)} \frac{1}{z+2} dz$
 - (b) $\int_{\gamma(i;3)} \frac{1}{z+2} dz$
 - (c) $\int_{\gamma(i;2)} \frac{1}{z^2+2} dz$
 - (d) $\int_{\gamma(i;3)} \frac{1}{z^2+2} dz$
- 11.2 Let γ be the directed curve that travels counterclockwise around the boundary of the set $\{z : |z| < 3 \text{ and } \text{Im } z > 0\}$. Using deformation and complex partial fractions, find

$$\int_{\gamma} \frac{1}{z^2 + 1} dz.$$

12. CAUCHY'S THEOREM II

- 12.1 Use the Cauchy Integral Theorem to do this problem.
 - (a) Prove: If g is an entire holomorphic function and if α and β are two piecewisesmooth curves in **C** that start at 0.2–3.4*i* and end at 2.8+7.6*i*, then $\int_{\alpha} g(z) dz = \int_{\beta} g(z) dz$.
 - (b) Prove that the previous statement is false if the word "entire" is removed and if α and β are required to be curves inside the domain of g.

13. CAUCHY'S FORMULAE

- 13.1 Let f be a holomorphic function on all of \mathbb{C} . Let h be the function defined by $h(z) = f\left(\frac{1}{z}\right)$.
 - (a) Prove that h is holomorphic on $\mathbb{C} \setminus \{0\}$.
 - (b) Prove that if $\lim_{z\to 0} h(z) = 0$, then f and h are constant functions.
- 13.2 Use the Cauchy Integral Formula to prove Liouville's Theorem.
- 13.3 Prove the Fundamental Theorem of Algebra.
- 13.4 True or False: If $\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz = f(a)$ for a counterclockwise-oriented circle γ centered at a, then f is holomorphic at a. (Provide justification.)
- 13.5 Evaluate the following integrals. Let $\gamma(w; R)$ denote the circle of radius R centered at $w \in \mathbb{C}$, oriented counterclockwise.
 - (a) $\int_{\gamma(0;2)} \frac{\sin(z)}{2z-\pi} dz$ (b) $\int_{\gamma(0;10)} \frac{1}{4z^2+2z+1} dz$
- 13.6 Suppose that f(z) is entire holomorphic and has the property that $|f(2z)| \le 2 |f(z)|$ for all $z \in \mathbb{C}$. What must be true about f?
- 13.7 Find the value of $\int_{\gamma(0;1)} \frac{1}{az^2+b} dz$ in terms of the nonzero complex numbers a and b.

14. Power series representation

14.1 Let $h(z) = e^{z^6} - \frac{z^5}{z+2i}$.

- (a) Find the Taylor series of the form $T(z) = \sum_{m=0}^{\infty} c_m z^m$ for h(z).
- (b) For which z does the Taylor series converge? [Justify briefly.]
- (c) For the values of z found in (b), does T(z) = h(z)? [Justify briefly.]

- (d) Suppose that h(z) is expanded in a Taylor series of the form $S(z) = \sum_{k=0}^{\infty} b_k (z+2i-1)^k$. For which values of z is it true that S(z) = T(z)?
- 14.2 Find the radius of convergence of the Taylor series for the real-valued function g: $\mathbf{R} \to \mathbf{R}$ defined by $g(x) = \frac{1}{e^x + 3}$, at the point x = -1.
- 14.3 Find the radius of convergence of the Taylor series of $\frac{z}{16+z^2}$ centered at z = 0.
 - (a) By doing a minimum of calculations.
 - (b) By computing the series and then finding its radius of convergence from the Cauchy-Hadamard formula.
- 14.4 Determine if each series converges or diverges. Determine the sum, if possible.

(a)
$$\sum_{n=0}^{\infty} (2-i)^n (3+i)^{-n}$$

(b) $\sum_{n=1}^{\infty} \frac{(i)^n}{((1+i)n)^2}$
(c) $\sum_{n=1}^{\infty} \frac{(i-1)^n}{((3+4i)n)^2}$
(d) $\sum_{n=0}^{\infty} (2-i)^n (1+i)^{-n}$

14.5 Find the radius of convergence of each power series:

(a)
$$\sum_{m=0}^{\infty} \frac{(x+5)^m}{4+3^m}$$

(b) $\sum_{n=0}^{\infty} \frac{n^{n-1}}{(n!)2^n} (x-1)^n$
(c) $\sum_{n=0}^{\infty} \frac{n^{2+n}x^n}{(n!)2^n}$
(d) $\sum_{m=0}^{\infty} \frac{x^m}{4^{-m}+3^m}$

- 14.6 Find the Taylor series of $\frac{z}{1-2z^2}$ centered at z = 0. For which $z \in \mathbb{C}$ does the series converge?
- 14.7 Find the Taylor series of $\ln(1+z^3)$. For which $z \in \mathbf{C}$ does the series converge?
- 14.8 Find the Taylor series of $\frac{\ln(1+z)-z}{z}$ centered at z = 0. For which $z \in \mathbb{C}$ does the series converge?

- 14.9 Ponder these questions:
 - (a) Suppose that g(x) is a smooth, real-valued function with Taylor series (at x = 0)

$$\sum_{j=0}^{\infty} \frac{x^j}{j!}.$$

Prove or disprove that $g(x) = e^x$ for every $x \in \mathbf{R}$.

(b) Suppose that g(z) is an analytic function with real-valued Taylor series (at x = 0)

$$\sum_{j=0}^{\infty} \frac{x^j}{j!}$$

for $x \in \mathbf{R}$. Prove or disprove that $g(z) = e^z$ for every $z \in \mathbf{C}$.

- 14.10 True or False (Provide justification.)
 - (a) If $f(z) = \sum_{n \ge 0} a_n (z z_0)^n$ is analytic on a region containing $\{z : |z z_0| \le R\}$, then there is a positive integer M such that $|a_n| \le \frac{M}{R^n}$ for all $n \ge 0$.
 - (b) If $\sum_{n\geq 0} a_n (z-z_0)^n$ converges on $\{z : |z-z_0| < R\}$ and diverges on at least one point of $\{z : |z-z_0| = R\}$, then there is a positive integer M such that $|a_n| \geq \frac{M}{R^n}$ for all $n \geq 0$.
 - (c) If f is a holomorphic function on an open set U in **C**, then for every $z_0 \in U$, there is a positive number ρ so that the Taylor series of f centered at z_0 converges uniformly on the set $\{z : |z z_0| < \rho\}$.
- 14.11 Find the radius of convergence of the Taylor series for the real-valued function g: $\mathbf{R} \to \mathbf{R}$ defined by $g(x) = \frac{1}{e^{x+2}}$, at the point x = -1.

15. Zeros of holomorphic functions

- 15.1 Suppose that g is a holomorphic function on the open unit disk D(0;1) such that $\operatorname{Re}(g(z)) = \operatorname{Im}(g(z))$ for all $z \in D(0;1)$. Prove that g is a constant function.
- 15.2 Find, with proof, the number of zeros z of the polynomial $z^6 + z^2 + 27z + 2$ such that $1 < z\overline{z} < 4$.
- 15.3 Suppose that f is an analytic function defined on the open unit disk that satisfies $f\left(\frac{1}{n}\right) = \frac{3+2n}{n}$ for all $n \ge 1$. Can you determine f(i+1) from this information? If so, find f(i+1); otherwise, explain why it is not possible.
- 15.4 Suppose that $g : \mathbf{C} \to \mathbf{C}$ is an entire holomorphic function such that Re(g(z)) = 0 for all $z \in \mathbf{C}$. Prove that g is a constant function, and find all possible values of this function.
- 15.5 Find the set of all possible holomorphic functions f on D(0;2) such that $\left(f\left(\frac{i}{n}\right) \frac{i}{n}\right)^2 =$

 $-\frac{1}{n^2}$. Provide justification that your solution(s) are the only possible solutions.

- 15.6 Suppose that f is an analytic function defined on the open unit disk that satisfies $f\left(\frac{1}{2n}\right) = \frac{1}{n^2}$ for all $n \ge 1$. Find $f\left(\frac{i+1}{2}\right)$.
- 15.7 Suppose that $g(z) = \prod_{n=1}^{\infty} \left(1 \frac{z}{z_n}\right) \exp\left(P_n(z)\right)$ is an entire holomorphic function, where each $P_n(z)$ is a polynomial function of z. Assume the nonzero complex numbers z_j satisfy $z_j \neq z_k$ if $j \neq k$.
 - (a) Prove that it is possible that g is the zero function.
 - (b) Prove or disprove from basic principles that it must be true that $\lim_{n\to\infty} |z_n| = \infty$ if g is not the zero function.
 - (c) Prove or disprove from basic principles that it must be true that $P_n(z)$ is uniquely determined for each n.
- 15.8 We are given an entire function β such that $|\beta(z)| \le |z+5|$ for all $z \in \{w \in \mathbb{C} : |w| > 12\}$. Prove that $\beta(z) = C_1 z + C_2$ for every $z \in \mathbb{C}$, for fixed complex numbers C_1 and C_2 with $|C_1| \le 1$.
- 15.9 Let $p(z) = z^5 + 5z^3 1$. Prove that
 - (a) p has five simple zeros,
 - (b) all five zeros of p lie in the disk $\{z : |z| < 3\}$, and
 - (c) no zeros of p lie in the set $\{z : |z| \le 2 \text{ and } |Re(z)| > 1\}$.
- 15.10 Determine the number of solutions to the equation $z^9 = 10z + 5$ in the annulus 1 < |z| < 2.

16. Holomorphic functions: further theory

- 16.1 Suppose that h is holomorphic on \mathbb{C} and $\lim_{z\to 0} zh\left(\frac{1}{z}\right)$ exists. What does this imply about h? (Justify.)
- 16.2 Prove each of the following.
 - (a) If G is holomorphic on \mathbb{C} and |G(z) 3| < 1 for all z such that |z| > 2, then G is a constant function.
 - (b) If F is holomorphic on \mathbb{C} and |F(z) 3| = 1 for all $z \in D(0; 2)$, then F is a constant function.
- 16.3 State the open mapping theorem, and use it to prove the maximum modulus principle.
- 16.4 Suppose that for z in the circle of radius 4 centered at the origin, the entire holomorphic function g is pure imaginary. Prove that g must be a constant.
- 16.5 Suppose that the function F is holomorphic on the disk of radius 2 centered at the origin, and F satisfies $|F(z)| \leq |\operatorname{Re}(z+1)|$ for all z such that $1 \leq |z| \leq 2$. What must be true about F? (Justify.)

17. SINGULARITIES

- 17.1 Find the principal part of the Laurent expansion about 0 of each function below.
 - (a) $\frac{1}{z^2 e^z \cos(z)}$ (b) $\frac{1}{z^3 e^z \cos(z)}$

(c)
$$\frac{z-z\exp(z)}{1+\exp(z)}$$

- 17.2 Suppose that g is a holomorphic function on \mathbb{C} such that there exists M > 0 such that $\left|\frac{z-1}{g(z)}\right| \leq M$ for all $z \in \mathbb{C}$ such that $g(z) \neq 0$.
 - (a) Prove that if g(z) has a zero, then it is a simple zero at z = 1.
 - (b) Prove that there exists a constant $K \in \mathbb{C}$ such that g(z) = K(z-1).
- 17.3 Find the Laurent series expansions for the function $g(z) = \frac{1}{(2-z)^2}$ corresponding to all possible annuli of convergence.
- 17.4 Find the Laurent series of the function $h(z) = \frac{1}{z^3+4z}$ that converges on the set $\{z : |z| = 3\}.$
- 17.5 Find the annulus of convergence of the Laurent series found in the last problem.
- 17.6 Locate and classify the singularities in \mathbb{C} of each function below.

(a)
$$\frac{1}{z(z^2+1)^3}$$

(b) $\frac{z-\pi}{\sin z}$
(c) $\frac{1}{z e^{1/z}}$
(d) $(\frac{1}{z}+4)^{-1} \sin z$

18. CAUCHY'S RESIDUE THEOREM

18.1 Compute the following (with justification).

 $\left(\frac{1}{z}\right)$

$$\int_{\gamma(0;5)} \frac{1}{e^{2z} \left(z + \log\left(2\right)\right)} dz$$

(b)

$$\int_{\gamma(2;3)} \frac{1}{z^4 - 2z^3 + z^2} dz - \int_{\gamma\left(3;\frac{5}{2}\right)} \frac{1}{z^4 - 2z^3 + z^2} dz$$

18.2 Find the following integrals

- (a) $\int_{\alpha} \frac{e^z}{z^3} dz$, where α is the curve defined by |z+1| = 3, oriented counterclockwise.
 - (i) (5 points) Using the Cauchy Integral Formula for derivatives
 - (ii) (5 points) Using the Residue Theorem

- (b) $\int_{\Delta} \left(z^2 \sin(1/z) + \frac{e^{z^2} \cos(z)}{z^2} \right) dz$, where Δ is the circle of radius 1 centered at 0, oriented counterclockwise.
- 18.3 For r > 0, let $I(r) = \int_{C_r} \left(\frac{2z-3}{(z-i)^2} + \cos(5z)\right) dz$, where C_r is the circle of radius r centered at 0, oriented counterclockwise. Find I(r).
- 18.4 Evaluate $\int_{|z|=1} z^2 \exp\left(\frac{i}{z}\right) dz$, where the orientation of the circle is counterclockwise. 18.5 Let β be the curve $\beta(t) = (2\cos(t), -\sin(t))$ for $0 \le t \le 2\pi$. Let

$$I = \int_{\beta} \frac{e^{3z}}{\left(z+1\right)^2} dz \; .$$

- (a) Compute I, using the Cauchy integral formula for derivatives.
- (b) Compute I, using the Residue Theorem.

18.6 Find

$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx.$$

18.7 Find the following integrals

- (a) $\int_{\alpha} \frac{e^z}{z^3} dz$, where α is the circle of radius 1, oriented counterclockwise.
 - (i) Using the Cauchy Integral Formula for derivatives
 - (ii) Using the Residue Theorem
- (b) $\int_{\alpha} \frac{1}{z^2+3z} dz$, where α is the circle of radius 1, oriented counterclockwise.
- (c) $\int_{\alpha} \frac{1}{z^3+3z} dz$, where α is the circle of radius 3, oriented clockwise.

(d)
$$\int_{-\infty}^{\infty} \frac{1}{x^2+1} dx$$

- (i) using $\arctan(x)$
- (ii) by using partial fractions
- (iii) by using the Residue Theorem
- (iv) Show that all answers agree.

(e)
$$\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 - 3x + 3} dx$$

- 18.8 Using complex analysis methods, compute the following.
 - (a) Find $\int_0^\infty \frac{1}{x^4 + 2x^2 + 1} dx$.
 - (b) Find $\int_0^{\pi} \frac{1}{5+4\cos(\theta)} d\theta$.
 - (c) Find $\int_0^\infty \frac{\cos(x)}{x^2+1} dx$.
 - (d) Find $\int_0^\infty \frac{\ln(x)}{(x^2+1)^2} dx$.

- 18.9 Suppose that $\int_{\alpha} \frac{g'(z)}{g(z)} dz = 6\pi i$, for a holomorphic function on a region D containing the simple closed Jordan curve α . Suppose that g has exactly two zeros in the interior of α . Prove or disprove that it is possible that these two zeros are simple.
- 18.10 Use the residue theorem to solve these questions:

(a) For
$$p \in \mathbb{R}$$
, find $\sum_{k=-\infty}^{\infty} \frac{1}{k^2 + 2p^2}$.
(b) For $p \in \mathbb{R} \setminus \mathbb{Q}$, find $\sum_{k=-\infty}^{\infty} \frac{1}{(k+2p)^2}$.
(c) For $p \in \mathbb{R} \setminus \mathbb{Q}$, find $\sum_{k=-\infty}^{\infty} \frac{(-1)^k}{(k+2p)^2}$.

19. HARMONIC FUNCTIONS

- 19.1 Let u be a harmonic function on a nonempty domain $U \subseteq \mathbb{R}^2$.
 - (a) Prove that u_y is also a harmonic function on U.
 - (b) Prove or disprove that if u is bounded on U, then a harmonic conjugate of u is also bounded on U.
 - (c) Prove that the function f on U (thought of as being a subset of \mathbb{C}) defined by $f(x+iy) = u_{xx}(x,y) i u_{xy}(x,y)$ is holomorphic on U.
- 19.2 A harmonic function u(z) on the unit disk is continuous on the closed unit disk except for a finite number of discontinuities on the boundary. Find such a u that satisfies the given condition.

(a)
$$u(e^{i\theta}) = \begin{cases} \pi & \text{if } 0 \le \theta \le \pi \\ 0 & \text{if } -\pi < \theta < 0 \end{cases}$$

(b) $u(e^{i\theta}) = \begin{cases} \cos(\theta) & \text{if } -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases}$

19.3 Let S and T be two domains in \mathbb{C} , such that there exists a holomorphic function $f: T \to S$. Let u be a harmonic function of $z \in S$. Prove that $u \circ f$ is a harmonic function on T.

20. INFINITE PRODUCTS

20.1 Find the values of z such that the infinite product

$$\prod_{k=0}^{\infty} \left(1 + z^{2k} \right)$$

converges.

20.2 Prove that the infinite product

$$\prod_{k=2}^{\infty} \left(1 - \frac{1}{\left(k+1\right)\left(k-1\right)} \right)$$

converges, and find the limit.

20.3 Prove that the infinite product

$$\prod_{k=0}^{\infty} \left(1 + \frac{(-1)^k z^k}{(k^2 + 1) 2^k} \right)$$

converges uniformly and absolutely on a closed disk of some radius R > 0, centered at zero. Is there a largest possible R such that the statement is true?

20.4 Prove that the infinite product

$$\prod_{k=0}^{\infty} \left(1 + \frac{\left(-1\right)^k z^k}{\left(k+1\right) 2^k} \right)$$

converges uniformly and absolutely on a closed disk of some radius R > 0, centered at zero. Is there a largest possible R such that the statement is true?

20.5 Prove or disprove that if both
$$\prod_{k=1}^{\infty} (1+b_k)$$
 and $\prod_{m=1}^{\infty} (1+c_m)$ converge, then
$$\prod_{k=1}^{\infty} (1+b_k) \prod_{m=1}^{\infty} (1+c_m) = \prod_{k=1}^{\infty} (1+b_k+c_k+b_kc_k),$$

with the right hand side being a convergent product. What happens if the two products converge absolutely?

20.6 Write a complete proof that for all $z \in \mathbb{C}$,

$$\sin(z) = z \prod_{k=1}^{\infty} \left(\frac{\pi^2 k^2 - z^2}{\pi^2 k^2} \right).$$

20.7 Use the above formula to prove that

$$\cos(z) = \prod_{k=1}^{\infty} \left(\frac{\pi^2 k^2 - 4z^2}{\pi^2 k^2 - z^2} \right).$$

[Hint: need to show that the product converges!]

20.8 Prove or disprove that

$$\prod_{k=1}^{\infty} e^{-z/k^2}$$

converges at each $z \in \mathbb{C}$. Find the largest set on which the product converges uniformly.

20.9 Prove or disprove that

$$\prod_{k=1}^{\infty} \left(1 + \frac{z}{k} \right) e^{-z/k}$$

(a) converges absolutely and uniformly on \mathbb{C} .

(b) converges absolutely and uniformly on any bounded subset of \mathbb{C} .