Homework 25 solutions

Sunday, November 11, 2018 9:29 AM

1. In order to show that fig is continuous at
$$x=c$$
,
choose arbitrary $\varepsilon > 0$. Then,
since $f(x)$ is continuous at $x=c$, given $\varepsilon_1 = 1$
choose $\delta_1 > 0$ s.t. $1 \times -cl < \delta_1$, $x \in A \implies |f(x) - f(c)| < 1$.
 $\Rightarrow |f(x)| < |f(c)| + 1$.
Also, given $\varepsilon_2 = \frac{\varepsilon}{2(g(c)|+1)}$, choose $\delta_2 > 0$ s.t
 $|x - cl < \delta_2$, $x \in A \implies |f(x) - f(c)| < \varepsilon_2$.
Since g is continuous at $x = c$, given $\varepsilon_3 = \frac{\varepsilon}{2(f(c)+1)}$
choose $\delta_3 > 0$ s.t. $|x - cl < \delta_3$, $X \in A \implies |g(x) - g(c)| < \varepsilon_3$.
Let $\delta = \min \{ \delta_1, \delta_2, \delta_3 \}$. Then $\forall x \in A$,
 $|x - cl < \delta \implies |f(x)g(x) - f(c)g(c)| = |f(x)g(x) - f(x)g(c) + f(x)g(c) - f(c)g(c)|$

4

 $\left[\Gamma(x) \right] = \left[\sigma(x) - \sigma(x) \right] = \left[\sigma(x) - \Gamma(x) - \Gamma(x) \right]$

$$(|f(c)|+1) \cdot \varepsilon_2 + (|g(c)|+1) \cdot \varepsilon_3 = \frac{\varepsilon_2}{2} + \frac{\varepsilon_2}{2} = \varepsilon_2$$

 Function f is not uniformly continuous on the set A if there exists an ε>0, such that for every s>0, there exist x, y ∈ A s.t. IX-y1 < s, yet 1 f(x) - f(y)1 >> ε.
 4.3.3 a) Given ε>0, since g is continuous at y=f(c) choose s₁>0, s.t. 1y-f(c)1 < s₁ => 1g(y) - g(f(c)1 < ε.

Since f is continuous at x = c, given $\mathcal{E}_1 = \mathcal{S}_1$, choose \mathcal{S}_{70} , s.t. $|X-c| < \mathcal{S}_{=} > |f(x) - f(c)| < \mathcal{S}_1$.

Then $|X-c| \leq S \Rightarrow |f(X) - f(c)| \leq S_1 \Rightarrow |g(f(x)-g(f(c))| \leq \varepsilon.$

b) Let
$$(X_n) \subset A$$
 be an arbitrary sequence s.t.
 $\lim X_n = C \implies$ by continuity of f at $x = C$
 $\lim f(X_n) = f(C) \implies$ by continuity of g at $f(C)$
 $\lim g(f(X_n)) = g(f(C))$. Then g of is continuous at
 $x = C$ by the sequential criterion of continuity.

1.3.6 (a) let
$$f(x) = \begin{bmatrix} 1, & x \neq 0 \\ l-1, & x=0 \end{bmatrix}$$
, $g(x) = \begin{bmatrix} -1, & x\neq 0 \\ l, & x=0 \end{bmatrix}$.
Then $f(x) + g(x) = 0$, $f(x) \cdot g(x) = -1$.
(b) If $f(x)$ and $f(x) + g(x)$ are both continuous
at $x=0$, then by the Algebraic Continuity than
 $g(x) = f(x) + g(x) - f(x)$ is also cont. at 0.
(c) Let $f(x) = 0$, then let $g(x)$ be as in (a),
then $f(x) \cdot g(x) = 0$.
d) Let $f(x) = \begin{cases} 2, & x\neq 0 \\ \frac{1}{2}, & x=0 \end{cases}$, then $f(x) + \frac{1}{4x} = \begin{cases} 2+\frac{1}{2}, & x\neq 0 \\ \frac{1}{2}+2, & x=0 \end{cases}$,
so $f(x) = 2.5$ is continuous.
e) Not possible. If $g(x) = [f(x)]^3$ is continuous,
then $f(x) = h(g(x))$ is continuous, where
 $h(x) = x \frac{1}{3}$.