Homework # 22 (Solutions)

- 3.3.4 a) KNF is always compact: KNF \(\) KNF \(\) KNF is bounded. Also KNF is closed since both K and F are closed. Thus KNF is compact.
- b) Closure of any set is closed =) $\frac{F^{c}UK^{c}}{F^{c}UK^{c}} = \frac{always}{s} = Let F = K = [0,1], \text{ then }$ $F^{c}UK^{c} = (-\infty,0)U(1,+\infty) \text{ and } F^{c}UK^{c}$ $= (-\infty,0]U[1,+\infty) \text{ is not bounded. Thus}$ $F^{c}UK^{c} = may \text{ not be compact.}$
- c) If K = [0,1] and $F = [0, \frac{1}{2}]$, then $K \setminus F = (\frac{1}{2}, 1)$ is not closed = also not compact.
- d) Since $K \Pi F^c \subseteq K \Rightarrow K \Pi F^c$ is bounded. $K \Pi F^c$ is also closed $\Rightarrow K \Pi F^c$ is compact.
 - #3.3.5. a) Tet K_{λ} be all compact, $\lambda \in \Lambda$.

 Then ΛK_{λ} is closed, since all K_{λ} are closed.
 - ΛK_{λ} is bounded, since $\Lambda K_{\lambda} \subseteq K_{\lambda'} \forall \lambda' \in \Lambda$.
 - =) A Ky Is compact.

(b) False. Sets $K_n = \{n\}$ are compact. $V_n = \{n\}$ is not bdd $= \{n\}$ not cpct.

(c) False A = (0, 1), K = [0, 1]Set $A \cap K = (0, 1)$ is not closed \Rightarrow not cpct. (d) False. Let $An = [n, +\infty)$. An is closed

 $\forall n \in \mathbb{N}$, yet $\bigwedge_{n=1}^{\infty} A_n = \emptyset$.