Homework # 20 (Solutions)

```
3.2.5] \Rightarrow Suppose that F is closed, if (an) \in F is Cauchy and \lim an = x with x \notin F. It follows from topological def. of \liminf t that \forall \varepsilon > 0 \forall \varepsilon (x) \cap F = \forall \varepsilon (x) \cap (F - \{x\}) \neq \emptyset, so x must be a limit point of F. Since F is closed, X \in F, which is a contradiction with x \notin F. Thus, if (an) \in F is Cauchy and \lim an = x \Rightarrow x \notin F.
```

= If x is any limit point of F, then \exists $(an) \subseteq F$, $an \neq x$ $\forall n$ and $\liminf an = x \Rightarrow x \in F$ by the assumption. Thus F is closed.

- 3.2.7. (a) Let m be an arbitrary limit point of L. Then there exists sequence $(ln) \in L$, $ln \neq m$, lim ln = m. Since $\forall n$, ln is a limit point of A $\exists an \in A$ s.t., $an \in (V_N(ln)-\{ln\})$ We can also choose $an \neq m$ (since $ln \neq m$). Then $lim |an m| \leq lim(|an ln| + |ln m|) = 0 + 0$ $\Rightarrow lim an = m$ and m is also a limit point of A. Thus $m \in L$, since L is the set of limit points of A! Thus, L is closed.
 - (b) Let now X be a limit point of AUL, then there is a segmence (x_n) , $\lim x_n = x$, $(x_n) \subset AUL$, $x_n \neq x$. There is a subsequence (x_{nk}) of (x_n) s.t. (x_{nk}) is completely in A or (x_{nk}) is completely in L. If $(x_{nk}) \subseteq A \Rightarrow x$ is a limit point of $A \Rightarrow x \in L$ If $(x_{nk}) \subseteq L \Rightarrow x \in AUL$.

3.2.9]
(a)
$$\cdot (x \in (U E_{\lambda})^{c}) \Leftrightarrow (x \notin U E_{\lambda}) \Leftrightarrow (x \notin E_{\lambda} \text{ for all } \lambda \in \Lambda)$$

$$\Leftrightarrow (x \in (E_{\lambda})^{c} \text{ for all } \lambda \in \Lambda) \Leftrightarrow (x \in \Lambda E_{\lambda}^{c})$$

$$\cdot (x \in (\Lambda E_{\lambda})^{c}) \Leftrightarrow (x \notin \Lambda E_{\lambda}) \Leftrightarrow (x \in \Lambda E_{\lambda}) \Leftrightarrow (x$$

(b) Let
$$F_i$$
, $1 \le i \le n$ be closed sets, then

Fi are open sets.

Set $(UF_i)^c = \bigcap_{i=1}^n F_i^c$ is open, so UF_i is closed.

Let F_{λ} , $\lambda \in \Lambda$ be closed sets, then F_{λ} are open sets.

Set
$$(\Lambda F_{\lambda})^{c} = U F_{\lambda}^{c}$$
 is open, so ΛF_{λ} is closed.