- 1. Let S, T be two sets and $f: S \rightarrow T$ is a bijection. Recall that then f has an inverse function $g: T \rightarrow S$, defined as follows: $\forall t \in T$, $g(t) = S_0$ where S_0 is the unique solution of the equation f(s) = t. Prove that $g: T \rightarrow S$ is a bijection.
- 2 let A1, A2,..., An, ... be countable sets. Prove that UAn 1s countable. (Hint. For each set An, since An 1s countable we can arrange An as a list

An = { ani, anz, ..., anm, }.

Now describe a way of arranging countably many lists into a single list, the proof is similar to the proof that Q+ is countable) Write a complete proof.