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2, we musl have

quilibrium solutions y2(2) = 0 and v3{l) =
{ solutions cannot

3. Since ¥(0) = 118 between the €
0 < y(t) < 2for all ¢ because the Uniqueness Theorerm implies that graphs 0

cross (or even touch in this case).

5. The Existence Theorem implies that a solution with this initial condition exists, at least fora small
{-interval about I = 0. This differential equation has equilibrium solutions y1(t) = 0, y) =1
and y3(t) = 3 for all ¢. Since v(0) = 4, the Uniqueness Theorem implies that (1) > 3 forall 1 in
the domain of y(!)- Also, dv/dt > 0for all y > 3,80 the solution y(?) 18 increasing for all ¢ in its

domain. Finally, y(£) = 3ast —> —0.

12. (a) Note that

d 1 (1 !
I (.,_ ———H O

ar  dt\r—1 TR

and
dyz d 1 . 1 _ )
dr  di t—2>— (1—2)2—_(}’2(”)’

so both y; (1) and ya(t) are solutions.
(b) Note that y1(0) = —1 and y2(0) = —1 J2. M p(n)is another solution whose initial condition
satisties —1 < y(@ < —1/2, then yi(t) < y() < vy (1) for all ¢ by the Uniqueness Theorem.

Also, since d¥ /dt < 0, ¥(1) is decreasing for all ¢ in its domain. Therefore, ¥(1) —> 0 as
{ - —o0, and the graph of y(1) has a vertical asymptote between ! = land ! = 2.

14. (a) The equation is separable, so we obtain

d
f(y+1)dy=f1_t?.

Solving for y with help from the quadratic formula yields the general solution

y)=—-1£vl1 Fln(c(t =2

0 and solving for ¢, we have

where c is a constant. Substituting the initial condition y(0) =
0=—1++1+In¢c),

and thus ¢ = 1/4 The desired solution is therefore

pit) = =141+ = 1/2)

{b) The solution is defined only when 1 + In((1 — t/2%) = 0, (hat is, when |t = 2| = 2/./e.
Therefore, the domain of the solution is

1 <21 = 1//e).
(¢) Ast — 2(1 — 1//€), then L +In((1 — 1/2)%) — 0. Thus

limn y()y=-1
t—2(1—1/4/2)

Note that the differential equation is not defined at y = —1. Also,note that

lim y{1)=00.
[——00"



16. (a) The equation is separable. Separating variables we obtain

f(y—Z)dy:ftdt.

Solving for y with help from the quadratic formula yields the general solution

y(t) =2+ Vt* +c.

To find ¢, we let 1 = —1 and y = 0, and we obtain ¢ = 3. The desired solution is therefore
yy=2- JITH3

(b) Since 12 + 2 is always positive and y(2) < 2 for all ¢, the solution y(2) is defined for all real
pumbers.

(¢) Ast — £00, 1> +3 = 00. Therefore,

1—l>lglooy(l) =T

18. (a) Solving forr, we get

3v 13
r=(—1}.
(%)

3v 2/3
=dr | =—
s(t) 71(4”)

= (‘v(t):"”.

Consequently,

where c is a constant. Since we are assuming that the rate of growth of v(1) is proportional to
its surface area s(?), we have
dv

T kvl_.-"3‘
di

where £ is a constant.

(b) The partial derivative with respectto v of dv/dt does not exist at v = 0. Hence the Uniqueness
Theorem tells us nothing about the uniqueness of solutions that involve v = 0. In fact, if we use
the techniques described in the section related to the unigueness of solutions for dy/dt = 3y?/3,
we can find infinitely many solutions with this initial condition.

(¢) Since it does not make sense to talk about rain drops with negative volume, we always have
v > 0. Once v > 0, the evolution of the drop is completely determined by the differential
equation.

What is the physical significance of a drop with v = 07 Itis tempting to interpret the fact
that solutions can have v = 0 for an arbitrary amount of time before heginning to grow as a
statement that the rain drops can spontaneously begin to grow at any time. Since the model
gives no information about when a solution with v = 0 starts to grow, it is not very useful for
the understanding the initial formation of rain drops. The safest assertion is to say is the model
breaks down if v = 0.



