Homework 8 due March 21

- 1. You need to know: all definitions and propositions (with proof) from section S.
- 2. Work out $\bigcap_{n=1}^{\infty} A_n$ and $\bigcup_{n=1}^{\infty} A_n$, where A_n is defined as follows for $n \in \mathbb{N}$:
 - (a) $A_n = \{x \in \mathbb{R} \mid x > n\}$ (b) $A_n = \{x \in \mathbb{R} \mid \frac{1}{n} < x < \sqrt{2} + \frac{1}{n}\}$ (c) $A_n = \{x \in \mathbb{R} \mid -n < x < \frac{1}{n}\}$ (d) $A_n = \{x \in \mathbb{R} \mid \sqrt{2} - \frac{1}{n} < x < \sqrt{2} + \frac{1}{n}\}.$
- 3. Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(A) = \{f(x) \mid x \in A\}$.
 - (a) Let $f(x) = x^2$. If A = [0; 2] and B = [1; 4], find f(A) and f(B). Does $f(A \cap B) = f(A) \cap f(B)$ in this case? Does $f(A \cup B) = f(A) \cup f(B)$?
 - (b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
 - (c) Show that, for an arbitrary function $g : \mathbb{R} \to \mathbb{R}$, it is always true that $g(A \cap B) \subseteq g(A) \cap g(B)$ for all sets $A, B \subseteq R$.
 - (d) Form and prove a conjecture about the relationship between $g(A \cup B)$ and $g(A) \cup g(B)$ for an arbitrary function g.
- 4. Give an example of each or state that the request is impossible:
 - (a) $f : \mathbb{N} \to \mathbb{N}$ that is 1 to 1 but not onto.
 - (b) $f : \mathbb{N} \to \mathbb{N}$ that is onto but not 1 to 1.
 - (c) $f : \mathbb{N} \to \mathbb{Z}$ that is 1 to 1 and onto.
- 5. Prove Lemma 6.1 on page 17 of Dr. Richardson's notes.