Homework due February 23

- 1. You need to know: two forms of the Fundamental Theorem of Algebra (Theorem P3 and Theorem P4), Proposition P5 (with proof), Proposition P6 (with proof), Proposition P7.
- 2. (a) Find the (complex) roots of the quadratic equation

$$x^2 - 5x + 7 - i = 0.$$

- (b) Find the roots of the quartic equation $x^4 + x^2 + 1 = 0$.
- (c) Find the roots of the equation $2x^4 4x^3 + 3x^2 + 2x 2 = 0$, given that one of them is 1 + i.
- 3. Factor $x^5 + 1$ as a product of real linear and quadratic polynomials.
- 4. If the roots of the equation $x^3 x 1 = 0$ are α , β , γ find a cubic equation having roots α^2 , β^2 , and γ^2 .