HOMEWORK 20
 DIFFERENTIAL EQUATIONS
 DUE 11-21

Show your work!

(1) Consider the differential equation

$$
u^{\prime \prime}+4 u^{\prime}+5 u=u_{3}(t), \quad u(0)=1, u^{\prime}(0)=-3 .
$$

(a) Find the formula for the solution $u(t)$ when $0<t<3$.
(b) Assuming that $u(t)$ is continuous at $t=3$, find the formula for the solution $u(t)$ when $t>3$. (Hint: Use continuity to find the initial condition.)
(2) Suppose that y_{1} is any function, and $y(t)=e^{a t} y_{1}(t)$ for some constant a. Use the integral definition of the Laplace transform to prove that $Y(s)=Y_{1}(s-a)$, where $Y_{1}=\mathcal{L}\left\{y_{1}\right\}$ and $Y=\mathcal{L}\{y\}$. (In words, multiplication by an exponential in the t-domain corresponds to a shift in the s-domain.)
(3) Use integration by parts, and the integral definition of the Laplace transform, to show that

$$
\mathcal{L}\left\{y^{\prime}\right\}=s \mathcal{L}\{y\}-y(0)
$$

What do you need to assume about $e^{-s(\infty)} y(\infty)$? (The technical details are in \#6.1.29.)

- Five book problems: $\# 6.1 .16,23 ; \# 6.2 .24 ; \# 6.3 .4,6$.

