HOMEWORK 19
 DIFFERENTIAL EQUATIONS
 DUE 11-12

Show your work!

(1) In class, we set up the solution of the differential equation

$$
y^{\prime \prime}+2 y+5=e^{-t} \sin (t), \quad y(0)=1, y^{\prime}(0)=0
$$

We found that, if $Y=\mathcal{L}\{y\}$, then

$$
Y=\frac{s^{3}+4 s^{2}+6 s+5}{\left(s^{2}+2 s+2\right)\left(s^{2}+2 s+5\right)}
$$

We decided to decompose this using partial fractions as

$$
Y=A \frac{s+1}{s^{2}+2 s+2}+B \frac{1}{s^{2}+2 s+2}+C \frac{s+1}{s^{2}+2 s+5}+D \frac{2}{s^{2}+2 s+5}
$$

(a) Explain why this choice of decomposition is a good one when we are using Laplace transforms. (Hint: Write each piece of the decomposition as a Laplace transform.)
(b) By clearing denominators and comparing coefficients, find a system of linear equations in A, B, C, and D.
(c) By hand or with a calculator, use (b) to find the values of A, B, C, and D.
(d) Use (a) and (c) to find a formula for y.

- Six book problems: \#6.2.2, 8, 10, 11, 22, 23.

