HOMEWORK 17
 DIFFERENTIAL EQUATIONS
 DUE 11-05

Show your work!

(1) Six second-order equations and four graphs of solutions are given below. For each graph, determine the differential equation of which it is a solution, and explain how you could figure out (without using a computer or calculator) that your answer was correct.

(2) Suppose that the suspension system of a typical car behaves like an undamped harmonic oscillator whose natural period is 2 sec . The developer of a certain neighbourhood wants to place speed bumps so that a car driving at 10 mph will bounce more and more with each bump. How far apart should the bumps be placed?
(3) Let $\omega_{\text {nat }}$ be the natural frequency of a certain undamped harmonic oscillator, and ω the frequency of a forcing function applied to it. Put $\alpha=\frac{1}{2}\left(\omega+\omega_{\text {nat }}\right)$ and $\beta=\frac{1}{2}\left(\omega-\omega_{\text {nat }}\right)$.
(a) Show that $e^{i \omega t}-e^{i \omega_{\text {nat }}}=e^{i \alpha t}\left(e^{i \beta t}-e^{-i \beta t}\right)$.
(b) Compute the real part of $e^{i \omega t}-e^{i \omega_{\text {nat }} t}$.
(c) Compute the real part of $e^{i \alpha t}\left(e^{i \beta t}-e^{-i \beta t}\right)$.
(d) Explain how your work above can be used to express $\cos (\omega t)-\cos \left(\omega_{\text {nat }} t\right)$ as a product of two sine waves. Do not just cite the identity from class.

- Four book problems: \#3.8.5, 7, 18, 19.

