HOMEWORK 13
 DIFFERENTIAL EQUATIONS
 DUE 2013-10-10

Show your work!

(1) The differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$ has $y=e^{-2 t}$ as one solution. Use reduction of order to find the general solution. (You must use reduction of order, not the method of §3.1.)
(2) This is problem \#3.3.34, but broken down into more steps. It's another illustration of the power of a change of variables, slightly more involved than reduction of order.
(a) Suppose that you have three variables y, x, and t. The chain rule says that

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

Explain why the chain rule also says that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

(b) Suppose that $x=\ln (t)$. Use your answer to (a) and the product rule to show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{1}{t} \quad \text { and } \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \cdot \frac{1}{t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{1}{t^{2}}
$$

(c) Use your answer to (b) to show that, if

$$
t^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+\alpha t \frac{\mathrm{~d} y}{\mathrm{~d} t}+\beta y=0, \quad t>0
$$

where α and β are constants, and $x=\ln (t)$, then

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(\alpha-1) \frac{\mathrm{d} y}{\mathrm{~d} x}+\beta y=0
$$

(which is a constant-coefficient, homogeneous, 2nd-order linear equation).

- Four book problems: \#3.3.35; \#3.4.14, 16, 27.

