HOMEWORK 10
 DIFFERENTIAL EQUATIONS
 DUE 2013-10-01

Show your work!

(1) Consider the differential equation

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

from class (and Example 3.1.2-3).
(a) Show that, after multiplying by the integrating factor $\mu=e^{2 t}$, the left-hand side becomes an exact derivative. (Hint: Compute the derivative of an expression of the form $P(t) y^{\prime}+Q(t) y$ and set it equal to the left-hand side.)
(b) Use your answer to (a) to convert the second-order equation into a first-order equation. (Hint: If $\square^{\prime}=0$, then $\square=\cdots$?)
(c) Solve your first-order equation from (b). Compare your solution to Example 3.1.2.
(2) Consider the differential equation

$$
y^{\prime \prime}+5 y^{\prime}+3 y=0 .
$$

(a) Find two solutions y_{1} and y_{2} such that $W\left(y_{1}, y_{2}\right) \neq 0$.
(b) Show that $W\left(y_{1}, y_{2}\right)$ is a constant multiple of $e^{-5 t}$.

- Five book problems: \#3.1.11, 12, 18, 21, 23.

