HOMEWORK 8
 DIFFERENTIAL EQUATIONS
 DUE 2013-09-17

Show your work!

(1) Consider the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=0.1 y\left(1-\frac{y}{5}\right) .
$$

(a) Find the general solution of this equation in implicit form.
(b) Find the general solution in explicit form.
(c) Use your answer to (b) to show that, if $y(0)>0$, then $\lim _{t \rightarrow \infty} y=5$.
(d) (+1 bonus) What changes in your answer to (c) if $y(0)<0$? (Hint: Try a specific choice of initial condition.)
(2) Consider the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=0.1 y\left(\frac{y}{3}-1\right)\left(1-\frac{y}{5}\right)
$$

We call $y=3$ the threshold population, and $y=5$ the carrying capacity.
(a) Describe the long-term behaviour of populations with varying initial sizes. Why are the names 'threshold' and 'carrying capacity' appropriate?
(b) What is the formula for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$ in terms of y ?
(c) What are the 'tipping points' for y ?

- Five book problems: $\# 2.6 .1,4,7,15,19$. For $\# 2.6 .1,4,7$, the equation is exact; you do not need to test it. For \#2.6.19, you do not need to test that the original equation is not exact.

