HOMEWORK 6
 DIFFERENTIAL EQUATIONS
 DUE 2013-09-10

Show your work!

(1) We saw in class that, if a rocket is projected upwards from the Earth's surface with an initial velocity of $v_{\text {init }}$, and if we ignore thrust and air resistance, then the velocity v when the height is h satisfies

$$
\frac{1}{2} v^{2}=\frac{g R^{2}}{R+h}+\frac{1}{2} v_{\text {init }}^{2}-g R
$$

where $g \approx 9.807 \mathrm{~m} / \mathrm{s}^{2}$ is acceleration due to gravity at the Earth's surface, and $R \approx$ $6.378 \times 10^{3} \mathrm{~m}$ is the radius of the Earth.
(a) Suppose that $v_{\text {init }}=\sqrt{2 g R}$. (This is called escape velocity.) Find a formula for the velocity v in terms of the height h.
(b) Use (a) to write a differential equation for h in terms of t. (This is easy!)
(c) Solve your equation in (b) to show that

$$
h=R^{1 / 3}\left[\left(3 \sqrt{\frac{g R}{2}} t+R\right)^{2 / 3}-R^{2 / 3}\right] .
$$

(2) Read \#2.3.27.
(a) The mass of the sphere is the volume of the sphere times the density of the sphere. Find a formula for the mass of the sphere in terms of a and ρ.
(b) The mass of the fluid displaced is the volume of the sphere times the density of the fluid. Find a formula for the mass of the fluid displaced in terms of a and ρ^{\prime}.
(c) Use your answers to (a) and (b) to write down a formula for the total force on the sphere. (Hint: The magnitude of buoyant force is the mass of the fluid displaced times g; the magnitude of the weight is the mass of the sphere times g; and the magnitude of the resistive force is given.)
(d) Use (c) to write a differential equation for the velocity v in terms of t.
(e) Solve \#2.3.27 (both parts).

- Two book problems: \#2.3.24, 25(a). (Hint: For \#2.3.24, pay attention to units! For part (c), imitate handout problem $\# 1$ to find a formula for x.)

