HOMEWORK 21 DIFFERENTIAL EQUATIONS DUE 10-26

Show your work! Write all final complex number (or complex function) answers in the form $a+b i$, where a and b are real numbers (or real functions).
(1) Compute the following products.
(a) $(1+i)^{2}$.
(b) $(\sqrt{2}+i \sqrt{3})(\sqrt{2}-i \sqrt{3})$.
(c) $(2+i)(\sqrt{5}+3 i)$.
(d) $(1+i \sqrt{5})(\cos (\sqrt{5} t)+i \sin (\sqrt{5} t))$.
(2) Compute the following quotients.
(a) $\frac{\cos (2 t)+i \sin (2 t)}{\sqrt{5}+3 i}$.
(b) $\frac{2+i}{\sin (t)+i \cos (t)}$.
(3) Consider the constant-coefficient, homogeneous, linear system with coefficient matrix $A=$ $\left(\begin{array}{cc}0 & 2 \\ -3 & 2\end{array}\right)$.
(a) In class, we found that $V=\binom{2}{1+i \sqrt{5}}$ is an eigenvector of A with eigenvalue $\lambda=$ $1+i \sqrt{5}$, so that

$$
Y=\binom{2 e^{(1+i \sqrt{5}) t}}{(1+i \sqrt{5}) e^{(1+i \sqrt{5}) t}}
$$

is a 'straight-line solution'. Use Euler's formula to write

$$
Y=Y_{\mathrm{re}}+i Y_{\mathrm{im}}
$$

where Y_{re} and Y_{im} involve real exponentials, sines, and cosines, but only real coefficients. (See p. 300.)
(b) Verify that Y_{re} and Y_{im} are solutions to the system of differential equations.
(4) In class, we discussed the conjugate of a complex number, which is obtained by switching the sign of i. For example, the conjugate of $1+i \sqrt{5}$ is $1-i \sqrt{5}$.
(a) Use the quadratic formula to show that, if a, b, and c are real numbers and the equation $a \lambda^{2}+b \lambda+c=0$ has complex solutions, then those solutions are complex conjugates.
(b) Use Euler's formula to show that, if λ_{1} and λ_{2} are complex conjugates, then so are $e^{\lambda_{1} t}$ and $e^{\lambda_{2} t}$. (Hint: Write $\lambda_{1}=a+i b$. What is λ_{2} ?)
(c) Find an eigenvector of the matrix A from $\# 3$ with eigenvalue $\lambda=1-i \sqrt{5}$. How is it related to the eigenvector in $\# 3(\mathrm{a})$?

- One book problem (with modifications): Find the complex form of one 'straight-line solution' to \#3.4.10. Write it in the same form as for \#3(a).

