HOMEWORK 16
 DIFFERENTIAL EQUATIONS DUE 10-05

Show your work!

(1) The solution curves for the second-order differential equation

$$
m \ddot{x}=-k x
$$

look like ellipses in the (x, v)-plane, where $v=\dot{x}$.
(a) Re-write this second-order equation as a system of first-order equations in x and v.
(b) What is the equation of an ellipse in the (x, v)-plane? Your answer should look like

$$
\text { something }=C \text {, }
$$

where something is a formula involving x and v, and C is a constant.
(c) Prove that the solution curves are ellipses by computing $\frac{\mathrm{d}}{\mathrm{d} t}$ something. (Hint: What answer should you get for the derivative? Use the system of first-order equations to re-write $\frac{\mathrm{d}}{\mathrm{d} t}$ something in terms of x and v only.)
(2) Five book problems: \#2.2.10, 11, 19, 26, 27.

