HOMEWORK 9 CALCULUS III DUE 02-18

(1) Let \vec{u} and \vec{v} be any two vectors with $\vec{u} \neq \vec{0}$. We want to show that we can write

$$\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp},$$

where \vec{v}_{\parallel} is parallel to \vec{u} , and \vec{v}_{\perp} is orthogonal to \vec{u} .

- (a) How can you express algebraically (*i.e.*, in terms of vector operations) that \vec{v}_{\parallel} is parallel to \vec{u} ?
- (b) How can you express algebraically that \vec{v}_{\perp} is orthogonal to \vec{u} ?
- (c) Use your answers to (a) and (b) to find a formula for $\vec{u} \cdot \vec{v}$.
- (d) Use your answers to (a) and (c) to find a formula for \vec{v}_{\parallel} .
- (e) Use your answer to (d) to show that \vec{u} is orthogonal to $\vec{v} \vec{v}_{\parallel}$.
- Eleven book problems: #11.3.15, 22, 24, 29, 30, 42, 44, 47, 56, 71, 73. For #11.3.42, you know $\operatorname{proj}_{\overrightarrow{OA}} \vec{w}$, where \vec{w} is the weight of the load. How can you use it to find $\|\vec{w}\|$? For #11.3.73, you will need the formula for work on p. 789.