What is the largest 'topless' trapezoid that can be made by folding up the ends of a 30 in length of wire?

What is the largest 'topless' trapezoid that can be made by folding up the ends of a 30 in length of wire?

Trying to maximise area

What is the largest 'topless' trapezoid that can be made by folding up the ends of a 30 in length of wire?

Trying to maximise area

Why not like this?

Area of a trapezoid:

$$
A=\frac{1}{2}(t+b) h
$$

t and b are length of top and bottom, and h is the height (in inches)

Three input variables, t, b, h

Three input variables, t, b, h, plus two more, s and e :

$$
b+2 s=30 \Rightarrow b=30-2 s
$$

By Pythagorean theorem,

$$
s^{2}=h^{2}+e^{2} \Rightarrow e=\sqrt{s^{2}-h^{2}}
$$

Three input variables, t, b, h, plus two more, s and e :

$$
b+2 s=30 \Rightarrow b=30-2 s
$$

By Pythagorean theorem,

$$
s^{2}=h^{2}+e^{2} \Rightarrow e=\sqrt{s^{2}-h^{2}}
$$

and

$$
t=b+2 e=30-2 s+2 \sqrt{s^{2}-h^{2}}
$$

Three input variables, t, b, h, plus two more, s and e :

$$
b=30-2 s \quad \text { and } \quad t=30-2 s+2 \sqrt{s^{2}-h^{2}}
$$

Three input variables, t, b, h, plus two more, s and e :

$$
b=30-2 s \quad \text { and } \quad t=30-2 s+2 \sqrt{s^{2}-h^{2}}
$$

New formula:

$$
A=\frac{1}{2}(t+b) h
$$

Three input variables, t, b, h, plus two more, s and e :

$$
b=30-2 s \quad \text { and } \quad t=30-2 s+2 \sqrt{s^{2}-h^{2}}
$$

New formula:

$$
A=\frac{1}{2}\left(\left(30-2 s+2 \sqrt{s^{2}-h^{2}}\right)+(30-2 s)\right) h
$$

Three input variables, t, b, h, plus two more, s and e :

$$
b=30-2 s \quad \text { and } \quad t=30-2 s+2 \sqrt{s^{2}-h^{2}}
$$

New formula:

$$
\begin{aligned}
A & =\frac{1}{2}\left(\left(30-2 s+2 \sqrt{s^{2}-h^{2}}\right)+(30-2 s)\right) h \\
& =\left(30-2 s+\sqrt{s^{2}-h^{2}}\right) h
\end{aligned}
$$

t, b, h, s, and e are lengths, so all are ≥ 0

t, b, h, s, and e are lengths, so all are ≥ 0
$b=30-2 s \geq 0 \Rightarrow s \leq 15$
t, b, h, s, and e are lengths, so all are ≥ 0
$b=30-2 s \geq 0 \Rightarrow s \leq 15$
$s^{2}=h^{2}+e^{2} \Rightarrow s \geq h$
t, b, h, s, and e are lengths, so all are ≥ 0
$b=30-2 s \geq 0 \Rightarrow s \leq 15$
$s^{2}=h^{2}+e^{2} \Rightarrow s \geq h$
Domain is (s, h) with $0 \leq s \leq 15$ and $0 \leq h \leq s$
t, b, h, s, and e are lengths, so all are ≥ 0
$b=30-2 s \geq 0 \Rightarrow s \leq 15$
$s^{2}=h^{2}+e^{2} \Rightarrow s \geq h$
Domain is (s, h) with $0 \leq s \leq 15$ and $0 \leq h \leq s$

Interior of the domain is where all inequalities are strict:

$$
0<s<15 \text { and } 0<h<s .
$$

Interior of the domain is where all inequalities are strict:

$$
0<s<15 \text { and } 0<h<s .
$$

Find where

$$
\nabla A=\left\langle\frac{\partial A}{\partial s}, \frac{\partial A}{\partial h}\right\rangle=\overrightarrow{0}
$$

(or ∇A is undefined)

Interior of the domain is where all inequalities are strict:

$$
0<s<15 \text { and } 0<h<s .
$$

Find where

$$
\nabla A=\left\langle\frac{\partial A}{\partial s}, \frac{\partial A}{\partial h}\right\rangle=\overrightarrow{0}
$$

(or ∇A is undefined)
Be careful! There are solutions not in the interior of the domain

Boundary is where we have equality:
■ $s=0$ and $0 \leq h \leq s$

Boundary is where we have equality:
■ $s=0$ and $0 \leq h \leq 0$

Boundary is where we have equality:
■ $s=0$ and $h=0$

Boundary is where we have equality:

- $s=0$ and $h=0$

■ $s=15$ and $0 \leq h \leq s$

Boundary is where we have equality:

- $s=0$ and $h=0$

■ $s=15$ and $0 \leq h \leq 15$

Boundary is where we have equality:

- $s=0$ and $h=0$

■ $s=15$ and $0 \leq h \leq 15$
■ $0 \leq s \leq 15$ and $h=0$

Boundary is where we have equality:

- $s=0$ and $h=0$

■ $s=15$ and $0 \leq h \leq 15$
■ $0 \leq s \leq 15$ and $h=0$
■ $0 \leq s \leq 15$ and $h=s$

Treat each case separately
When $s=0$, the only possibility is $h=0$, so add $(0,0)$ to the list

Treat each case separately
When $s=15$:

Treat each case separately
When $s=15$:

$$
A=\left(30-2 s+\sqrt{s^{2}-h^{2}}\right) h
$$

Treat each case separately
When $s=15$:

$$
A=\left(30-2(15)+\sqrt{(15)^{2}-h^{2}}\right) h
$$

Treat each case separately
When $s=15$:

$$
\begin{aligned}
A & =\left(30-2(15)+\sqrt{(15)^{2}-h^{2}}\right) h \\
& =\sqrt{225-h^{2}} \cdot h .
\end{aligned}
$$

Treat each case separately
When $s=15$:

$$
\begin{aligned}
A & =\left(30-2(15)+\sqrt{(15)^{2}-h^{2}}\right) h \\
& =\sqrt{225-h^{2}} \cdot h .
\end{aligned}
$$

Domain is $0 \leq h \leq s$.

Treat each case separately
When $s=15$:

$$
\begin{aligned}
A & =\left(30-2(15)+\sqrt{(15)^{2}-h^{2}}\right) h \\
& =\sqrt{225-h^{2}} \cdot h .
\end{aligned}
$$

Domain is $0 \leq h \leq 15$.
One critical point $(s, h)=(15, h)$ with $0<h<15$ (where?)

Treat each case separately
When $s=15$:

$$
\begin{aligned}
A & =\left(30-2(15)+\sqrt{(15)^{2}-h^{2}}\right) h \\
& =\sqrt{225-h^{2}} \cdot h .
\end{aligned}
$$

Domain is $0 \leq h \leq 15$.
One critical point $(s, h)=(15, h)$ with $0<h<15$ (where?)
Endpoints $(s, h)=(15,0)$ and $(s, h)=(15,15)$

List so far:

■ Interior critical point

List so far:

■ Interior critical point

- $(0,0)$

List so far:

- Interior critical point
- $(0,0)$

■ $(15,0)$ and $(15,15)$, and another critical point where $s=15$

List so far:

■ Interior critical point
■ $(0,0)$

- $(15,0)$ and $(15,15)$, and another critical point where $s=15$

Plug all points (s, h) into A :

s	h	A
0	0	0
15	0	0
15	15	0
\vdots	\vdots	\vdots

Plug all points (s, h) into A :

s	h	A
0	0	0
15	0	0
15	15	0
\vdots	\vdots	\vdots

The biggest are the absolute maxima

Plug all points (s, h) into A :

s	h	A
0	0	0
15	0	0
15	15	0
\vdots	\vdots	\vdots

The biggest are the absolute maxima; no need for derivative tests

